これまでのモニタリング結果（平成18年度〜平成24年度）

底質固化体からのダイオキシン類の溶出状況を確認するため、平成22年に取りまとめた「横十間川における今後の底質関連対策（平成23年3月）」に基づき、平成23年〜平成24年までの2年間で行ってきた仮定対策後のモニタリング結果を追加した。
モニタリングは、河川整備まで継続し、整備後は、近傍の環境局の水質と底質の調査結果を用いた経過観察に移行する予定である。
なお、モニタリングは、水質、底質、底質固化体（供試体）について、建設局が実施する調査に加えて環境局が公共用水域水質観測地点で行う調査結果を活用して行っている。
また、ダイオキシン類の指標となる毒性等量は、毒性を評価する毒性等価係数が平成18年度にTEF(WHO-1998)からTEF(WHO-2006)に移行しているため、移行以前の数値についてもTEF(WHO-2006)で変換した値に変換して再評価している。

＜モニタリング計画＞

出典「横十間川における今後の底質関連対策」（平成23年3月）より

＜モニタリング位置＞
水質
◇ダイオキシン類
建設局の結果では、栗原橋、天神橋、錦糸橋のすべての地点において、監視基準値の1pg-TEQ/L未満であった。環境局の結果では、天神橋において季節毎の測定では、1pg-TEQ/L以上（1.2～2.9pg-TEQ/L）の結果が一部見られた。年平均値では監視基準値である1pg-TEQ/Lを超えた年度があったが翌年度（平成24年度）には監視基準値内に戻った。この水質ダイオキシン類濃度とSS濃度との関係を見たところ、SS濃度が3mg/L以上の時に水質ダイオキシン1pg-TEQ/L以上となっていた。このことから、降雨や底質の攪乱による水の濁りが影響を及ぼしたと考えられる。

<table>
<thead>
<tr>
<th>主体</th>
<th>建設局</th>
<th>環境局</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査地点</td>
<td>栗原橋（冬季）</td>
<td>天神橋（冬季）</td>
<td>錦糸橋（冬季）</td>
</tr>
<tr>
<td></td>
<td>春季</td>
<td>夏季</td>
<td>秋季</td>
</tr>
<tr>
<td>H14年度</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H15年度</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H16年度</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H17年度</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H18年度</td>
<td>0.45</td>
<td>0.48</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.57)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>H19年度</td>
<td>0.30</td>
<td>0.20</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.24)</td>
<td>(0.52)</td>
</tr>
<tr>
<td>H20年度</td>
<td>0.31</td>
<td>0.60</td>
<td>0.31</td>
</tr>
<tr>
<td>H21年度</td>
<td>0.32</td>
<td>0.42</td>
<td>0.30</td>
</tr>
<tr>
<td>H22年度</td>
<td>0.26</td>
<td>0.40</td>
<td>0.46</td>
</tr>
<tr>
<td>H23年度</td>
<td>0.27</td>
<td>0.75</td>
<td>0.40</td>
</tr>
<tr>
<td>H24年度</td>
<td>0.35</td>
<td>0.48</td>
<td>0.28</td>
</tr>
</tbody>
</table>

出典:建設局調査、環境局調査
注1.（）は、WHOの1998年時の基準で計算
2.赤字は、水質ダイオキシン類の環境基準値（1pg-TEQ/L）を超過した結果を示す。
3.毒性等量は、検出下限未満の実測濃度は検出下限の1/2の値を用いて算出したものである。
4.建設局の調査は、冬季に実施している。
◎ SS濃度、濁度
建設局の結果では、SS濃度は栗原橋で3〜5mg/L、天神橋で2〜5mg/L、錦糸橋で2〜6mg/Lの範囲内にあった。環境局の結果では、天神橋でのSS濃度は、季節毎の測定では、3mg/L以上の結果が一部で見られた。しかし、年平均値で2.5〜5.0mg/Lの範囲内にあることが確認できた。いずれの結果もSS濃度については、環境基準値(50mg/L以下)を満たしていた。

<table>
<thead>
<tr>
<th>年度</th>
<th>建設局</th>
<th>環境局</th>
<th>環境基準値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>栗原橋</td>
<td>天神橋</td>
<td>錦糸橋</td>
</tr>
<tr>
<td></td>
<td>SS(mg/L)</td>
<td>濁度(度)</td>
<td>SS(mg/L)</td>
</tr>
<tr>
<td>H18</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>H19</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>H20</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>H21</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>H22</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>H23</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>H24</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

出典：建設局、環境局調査
注：環境局調査は、平均値であるため、小数点以下1桁まで標記した

◎ pH、BOD、DO、N、P
水素イオン濃度(pH)については、全ての調査で環境基準を満たしていた。生物化学的酸素要求量(BOD)については、1回超えたことを除き、環境基準を満たしていた。溶存酸素量(DO)については、23回超えたことを除き、環境基準を満たしていた。都内内部河川のDOについては、恒常的に夏季に悪化の傾向が見られる。全窒素(T-N)、全りん(T-P)については、河川の水質環境基準はないが全般的に都内内部河川と同様の傾向がみられた。

(環境基準未達成回数)

<table>
<thead>
<tr>
<th>年度</th>
<th>環境基準値(C類型)</th>
<th>水素イオン濃度(pH)</th>
<th>生物化学的酸素要求量(BOD)</th>
<th>溶存酸素量(DO)</th>
<th>全窒素(T-N)</th>
<th>全りん(T-P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6.5以上 8.5以下</td>
<td>5mg/以下 5mg/以上</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H18</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H19</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H20</td>
<td>0/12</td>
<td>1/12</td>
<td>4/12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H21</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H22</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H23</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H24</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>合計</td>
<td>0/84</td>
<td>1/84</td>
<td>24/84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
注）分子：調査実施検体数
分子：水質環境基準を満足しない検体数
環境局の結果では、天神橋での水質のカドミウム（Cd）、鉛（Pb）、六価クロム（Cr₆⁺）、砒素（As）、総水銀（Hg）、PCBのいずれの物質についても、定量下限値と同等かそれ以下であり、環境基準を満足していた。

<table>
<thead>
<tr>
<th>項目基準値</th>
<th>年</th>
<th>測定日</th>
<th>カドミウム（Cd）</th>
<th>鉛（Pb）</th>
<th>六価クロム（Cr₆⁺）</th>
<th>砒素（As）</th>
<th>総水銀（Hg）</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H18</td>
<td>8/23</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/7</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td>H19</td>
<td>8/15</td>
<td>0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/6</td>
<td>0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td>H20</td>
<td>8/20</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/10</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td>H21</td>
<td>8/19</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/18</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td>H22</td>
<td>8/11</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/1</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td>H23</td>
<td>8/2</td>
<td>&lt;0.001</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/21</td>
<td>&lt;0.0005</td>
<td>0.005</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td>&lt;0.0005</td>
</tr>
<tr>
<td></td>
<td>H24</td>
<td>8/21</td>
<td>&lt;0.0003</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/12</td>
<td>&lt;0.0003</td>
<td>0.002</td>
<td>&lt;0.01</td>
<td>&lt;0.005</td>
<td>0.0005</td>
<td></td>
</tr>
</tbody>
</table>

出典: 環境局調査
底質

ダイオキシン類（含有量）

天神橋での底質ダイオキシン類（含有量）濃度は、建設局の調査では88〜260pg-TEQ/g の範囲、環境局の調査では190〜320pg-TEQ/g の範囲にあり、監視基準値である1,000pg-TEQ/g 未満であった。しかし、いずれの調査においても環境基準値150pg-TEQ/g を上回る結果であるため、低濃度の汚染土としての対策が必要である。

(単位:pg-TEQ/g)

<table>
<thead>
<tr>
<th>年度</th>
<th>天神橋</th>
<th>環境局</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>H14</td>
<td>ー</td>
<td>(300)</td>
<td>WHOの1998年時の基準で計算</td>
</tr>
<tr>
<td>H15</td>
<td>ー</td>
<td>(410)</td>
<td>&quot;</td>
</tr>
<tr>
<td>H16</td>
<td>ー</td>
<td>(570)</td>
<td>&quot;</td>
</tr>
<tr>
<td>H17</td>
<td>ー</td>
<td>(280)</td>
<td>&quot;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>年度</th>
<th>天神橋</th>
<th>環境局</th>
</tr>
</thead>
<tbody>
<tr>
<td>H18</td>
<td>150</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>(160)</td>
<td>(270)</td>
</tr>
<tr>
<td>H19</td>
<td>88</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>(98)</td>
<td>(290)</td>
</tr>
<tr>
<td>H20</td>
<td>260</td>
<td>210</td>
</tr>
<tr>
<td>H21</td>
<td>210</td>
<td>310</td>
</tr>
<tr>
<td>H22</td>
<td>150</td>
<td>320</td>
</tr>
<tr>
<td>H23</td>
<td>110</td>
<td>270</td>
</tr>
<tr>
<td>H24</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

出典: 建設局調査、環境局調査
注1. ( ) は、WHOの1998年時の基準で計算
2. 赤字は、底質ダイオキシン類の環境基準値（150pg-TEQ/g）を超過した結果を示す。
3. 毒性等量は、検出下限未満の実測濃度は検出下限の1/2 の値を用いて算出したもので
底質固化体（供試体）

◇ダイオキシン類（振とう溶出試験）

施工半年後（再分析も含む）及び施工1年後において、監視基準値である1pg-TEQ/Lを超えていた。その後、施工2年後からは、監視基準値（1pg-TEQ/L以下）を満たしている。
なお、平成24年度はモニタリング計画上、実施していない。

(単位:pg-TEQ/)

<table>
<thead>
<tr>
<th>年度</th>
<th>施工後</th>
<th>都施工分 (添加量200kg/m³)</th>
<th>国施工分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>都n1</td>
<td>都n2</td>
</tr>
<tr>
<td>H17</td>
<td>施工時</td>
<td>0.15</td>
<td>(0.18)</td>
</tr>
<tr>
<td>H18</td>
<td>施工半年後</td>
<td>1.4 (1.6)</td>
<td>1.5 (1.8)</td>
</tr>
<tr>
<td></td>
<td>施工1年後</td>
<td>2.6 (3.0)</td>
<td>2.2 (2.5)</td>
</tr>
<tr>
<td>H19</td>
<td>施工2年後</td>
<td>0.30 (0.38)</td>
<td>0.32 (0.40)</td>
</tr>
<tr>
<td>H20</td>
<td>施工3年後</td>
<td>0.11</td>
<td>0.14</td>
</tr>
<tr>
<td>H21</td>
<td>施工4年後</td>
<td>0.087</td>
<td>0.087</td>
</tr>
<tr>
<td>H22</td>
<td>施工5年後</td>
<td>0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>H23**</td>
<td>施工6年後</td>
<td>0.19</td>
<td>0.21</td>
</tr>
</tbody>
</table>

出典：国土交通省河川局河川環境課データ（H17のみ）、建設局調査

※1：都施工分の振とう溶出試験は、第1〜4ブロックの固化体を粉碎・ふるい分けし、等量混合した状態で試験を行った。

2. (1) は、WHOの1998年時の基準で計算

3. 供試底質（ダイオキシン類の環境基準（1pg-TEQ/L）を超えた問題を表している。）

4. 毒性等値は、定量下限値未満の実測濃度を0として算出し求めたものである。

従って、平成18年度に行った試料の乾燥は、当時の知見では明確ではなかったものの、平成20年以降の規定について考えると、問題のある調製方法であったと言える。今後もモニタリング調査において固化体の振とう溶出試験を行う場合には、湿試料を用いることが妥当である。

【平成18年度において溶出試験値が高くなった理由】

「ダイオキシン類を含む底質固化体の溶出試験方法について」（技術支援課 松村真人、大澤健二、武本敏男、平21都土木技術支援・人材育成センター年報、ISSN 1884-040X Annual Report）において、検討されている。

平成18年度に都施工分として行った施工半年後及び1年後の固化体の溶出試験に当たっては、一軸圧縮強度試験後の底質固化体を、含水量測定のため絶乾状態にしたもの破砕して振とう溶出試験の試料とした。平成19年度以降は溶出試験に用いる試料と含水量測定に用いる試料を分けて試験を行い、測定した含水量と溶出試験に使用する試料の混和重量から乾燥重量を求めて調製溶出試験を実施した。今回の試験結果から、平成18年度の試験結果の数値が高かった原因は、試料調製方法の違いによって、フミン質など溶出液中の有機物の量に違いが生じた可能性が高かったことが考えられる。施工箇所における溶出の状態からは、平成19年度以降の試料調製方法の方がより実態に沿っている。平成20年3月に改訂された「ダイオキシン類を含む底質調査測定マニュアル」（環境省水・大気環境局水環境課）によると、採取試料の風乾の際、室温以上の加熱、送風等を行ってはならないという記述が新たに加えられた。

従って、平成18年度に行った試料の乾燥は、当時の知見では明確ではなかったものの、平成20年以降の規定について考えると、問題のある調製方法であったと言える。今後もモニタリング調査において固化体の振とう溶出試験を行う場合には、湿試料を用いることが妥当である。
正常の確認（一軸圧縮強度）

望ましい固化強度（200 kN/m²）と比較しても、都施工分のH22年度の1本を除き、強度は確保されていると考えられる。

なお、平成24年度はモニタリング計画上、実施していない。

<table>
<thead>
<tr>
<th>年度</th>
<th>施工後</th>
<th>都施工分（添加量200kg.m³）</th>
<th>国施工分</th>
<th>200年後</th>
</tr>
</thead>
<tbody>
<tr>
<td>H17</td>
<td>施工時（28日後）</td>
<td>286 400 716 866</td>
<td>施工時（28日後）</td>
<td>280 395</td>
</tr>
<tr>
<td></td>
<td>施工年</td>
<td>- - - -</td>
<td>施工270日後</td>
<td>601 749</td>
</tr>
<tr>
<td>H18</td>
<td>施工半年後</td>
<td>574 1,268 861 1,089</td>
<td>施工630日後</td>
<td>340 1,320</td>
</tr>
<tr>
<td></td>
<td>施工1年後</td>
<td>592 1,576 1,099 1,384</td>
<td>施工1000日後</td>
<td>1,185 942</td>
</tr>
<tr>
<td>H19</td>
<td>施工2年後</td>
<td>446 1,545 1,103 1,467</td>
<td>施工1350日後</td>
<td>257 649</td>
</tr>
<tr>
<td>H20</td>
<td>施工3年後</td>
<td>534 1,474 629 1,106</td>
<td>施工1710日後</td>
<td>754 295</td>
</tr>
<tr>
<td>H21</td>
<td>施工4年後</td>
<td>333 845 577 1,096</td>
<td>施工2020日後</td>
<td>1,536 684</td>
</tr>
<tr>
<td>H22</td>
<td>施工5年後</td>
<td>386 526 146 476</td>
<td>施工2020日後</td>
<td>1,536 684</td>
</tr>
<tr>
<td>H23*</td>
<td>施工6年後</td>
<td>420 2302 1380 1807</td>
<td>施工2020日後</td>
<td>439 176</td>
</tr>
</tbody>
</table>

出典：国土交通省河川局河川環境課データ（H17のみ）、建設局調査
※平成23年度調査では、固化体からポーリングにより直接採取して実施（基準値200KN/m²）