4. 中小河川感潮域の水面浮遊物判定CNNの構築

Automatic Distinction of Floating River Litter in Tidal Area using Convolutional Neural Network

技術支援課 〇高崎 忠勝、枝澤 知樹

1. はじめに

石神井川等の感潮域では、しばしばスカムやゴミ 等の浮遊物による河川景観の悪化や悪臭の発生が問 題となっている。スカムとは河床に堆積した有機性 の懸濁物質が水面に浮上したものであり、感潮域に 位置する多くの中小河川で確認されている^{1~3)}。

スカムが問題となっている河川では、さまざまな スカム対策の取り組みが行われており⁴⁾、こうした取 り組みの効果を沿川住民に示す方法として定量的な スカム浮遊量を用いた説明が考えられる。例えば、 呑川では将来的な水質改善の目標値として、水面の スカムが占める面積割合1%以下することが示され ている⁵⁾。実際の河川水面の状況をモニタリングし、 水面のスカムが占める面積割合を継続して示すこと で、経年的なスカム浮遊量の変化を把握することが できる。

これまでに、AIの一種である多層パーセプトロン (Multilayer perceptron: MLP)を用いることによ り、定点カメラ画像から河川水面上に浮遊している スカムの程度を判定することが可能となっている^{6,7)}。 しかし、このMLPモデルでは20×20ピクセルの矩形範 囲毎にスカムの多少を判定しており、呑川の将来的 な水質改善の目標値で記されているような面積割合 1%といった詳細な判定には使用できない。

近年、AIを用いた画像認識においては畳み込み ニューラルネットワーク(Convolutional neural network: CNN)が多く用いられており、画像認識の テストに利用できるオープンのデータセットも公開 されている。また、AIモデルのプログラム作成にお いては、TensorFlowやPyTorch等の機械学習ライブラ リが利用できるようになっている。

こうした背景のもと、東京都立大学との共同研究 によりCNNを用いた高解像度の水面浮遊物の判定に取 り組み、1ピクセル毎の判定を行うCNNモデルを構築 した^{8,9)}。

2. 水面浮遊物判定CNNモデル

スカムやゴミ等の浮遊物は時間経過によって移動 するため、浮遊物の実態を把握するにはビデオ映像 や一定時間間隔で撮影したカメラ画像を分析する必 要がある。本検討では石神井川感潮域において2016 年に定点撮影したカメラ画像を用いて検討を行った。

図-1に示すように王子駅付近の石神井川右岸にイ ンターバルカメラを設置した。

図-1 カメラ設置地点

図-2にインターバルカメラによって取得した画像 の例を示す。画像はサイズが1280×720ピクセルのカ ラーのデータとなっている。10分間隔で撮影を行っ ている。本検討では目視で多くの浮遊物を確認した 9月8日、9月9日、9月16日、9月17日の4日間の画像を 用いた。

図-2をみると水面に空や電線、周囲の建物が映っ ていることが分かる。水面への映り込みは気象の状 況によって異なる。このため、1ピクセルのみの色情 報では浮遊物を適切に判定することができず、周囲 のピクセルの色情報も含めて判定する必要がある。 そこで、図-3のように矩形範囲の色情報を用いて、 中心部分のピクセルに映っているものを判定するこ ととした。

また、画像には水面以外の部分が多く含まれてい ることが分かる。感潮域では潮汐によって水位が時々 刻々と変化し、画像毎に水面の範囲が異なるため、 水面と水面以外を判定する必要もある。

浮遊物にはスカムの他に落葉や枝、発泡スチロー ル等、様々なものがあるが、本検討では、スカム以 外の浮遊物は全てゴミとして取り扱うこととした。

水面浮遊物を判定するCNNモデルは、矩形範囲の中 心部分が、「水面以外」「浮遊物なし」「ゴミ」「ス カム」の4種類のいずれの状態であるかを判定するも のである。画像から抜き出す矩形範囲を移動させな がら判定を行うことで、画像における水面に占める スカムやゴミが占める割合を求めることができる。

図-4に構築したCNNモデルの構成を示す。入力層、 畳み込み層・プーリング層が2層、全結合層が2層、 出力層となっている。 入力層には読み込んだ画像から抜き出した33×33 ピクセルの色情報を入力する。色情報はRGBあるいは HSVの3チャンネルの情報である。

出力層のユニット数は4であり、各ユニットがそれ ぞれ「水面以外」「浮遊物なし」「ゴミ」「スカム」 の状態に対応し、最も値が大きいユニットが受け持 つ状態が判定結果となる。

CNNのプログラム作成には、プログラミング言語 Pythonおよび機械学習ライブラリPyTorchを用いた。

図-2 カメラ画像の例

図-3 入力情報と判定対象

図-4 水面浮遊物判定CNNの構成

3. 教師データの作成

CNNモデルが適切な判定をできるようにするには、 模範解答を付したデータを用いて学習を行う必要が ある。また、CNNモデルの判定の妥当性を検証する際 にも模範解答が必要となる。この学習や検証に用い る模範解答を付したデータを教師データという。

学習に用いるデータ(以下、学習データ)には、 9月8日、9月9日、9月16日の3日間の画像を用い、検 証に用いるデータ(以下、検証データ)には、9月 17日の画像を用いた。画像の各ピクセルが「水面以 外」「浮遊物なし」「ゴミ」「スカム」のいずれの 状態に該当するかを目視で判定した。暗部等で判別 できないものは「不明」とした。

目視で画像の全ピクセルを判定すると膨大な手間 を要するので、10×10ピクセルに対して1ピクセルを 判定対象とした。また、判定作業を容易にすること を目的として図-5のように判定結果の入力を支援す るプログラムを作成した。このプログラムでは目視 による判定を容易にするため、通常の画像と色反転 させたネガポジ画像の両方を見ながら作業を行うこ とができる。

学習データと検証データに用いた全ての画像にお いて「水面以外」と判定した部分と「不明」が多い 部分は、CNNモデルによる判定の対象外とした。検討 に用いた学習データと検証データの数を表-1に示す。 学習データに占める各状態の割合は、「水面以外」 13%、「浮遊物なし」69%、「ゴミ」6%、「スカム」 12%であり、「浮遊物なし」の割合が大きくなって いる。また、検証データについては、「水面以外」7%、

「浮遊物なし」70%、「ゴミ」10%、「スカム」13% であり、学習データの割合と大きくは変わらない。

4. RGBデータによるCNNモデル

図-4に示したCNNモデルについて表-1の学習デー タを用いて学習を行った。CNNモデルに入力する際の 色情報は、Red、Green、Blueで構成されるRGBを用い た。学習においてはドロップアウトとバッチノーマ ライゼーションを適用した。

学習の進捗による判定能力の変化を把握するため に、学習回数を1、10、20、30、40、50epochとした

図-5 教師データ作成支援プログラム

表-1 教師データ数

	学習データ	検証データ	計
水面以外	125,629	16,815	142,444
浮遊物なし	687,450	171,260	858,710
л́ Е	55,638	24,486	80,124
スカム	123,429	31,131	154,560
計	992,146	243,692	1,235,838

ときのCNNモデルを用いて学習データおよび検証デー タに対して判定を行った。CNNモデルの出力と教師 データが一致している割合を正答率とし、正答率と 学習回数の関係を図-6に示す。

学習データに対する判定は、20epoch以上の学習で 95%以上の正答率となった。また、実際の判定能力 に大きく関係する検証データに対する判定は、20 epoch学習時に84.0%の正答率となった。

20epoch学習時のCNNモデルを用いて画像を判定さ せた例を図-7に示す。出力結果において「水面以外」 は無着色、「浮遊物なし」は水色で着色、「ゴミ」 は黄色で着色、「スカム」は赤色で着色している。 判定結果のピクセル数をみると「水面以外」が 55200ピクセル、「浮遊物なし」が265250ピクセル、

図-7 入力画像と出力結果

色空間	画像処理	正答数	正答率
RGB	なし	944,553	95.2%
	Bilateral Filter	943,968	95.1%
	CLAHE	945,309	95.3%
HSV	なし	945,178	95.3%
	Bilateral Filter	944,239	95.2%
	CLAHE	946,011	95.3%

表-2 学習データに対する判定

色空間	画像処理	正答数	正答率
RGB	なし	204,609	84.0%
	Bilateral Filter	203,894	83.7%
	CLAHE	201,675	82.8%
HSV	なし	201,548	82.7%
	Bilateral Filter	199,879	82.0%
	CLAHE	201,017	82.5%

表-3 検証データに対する判定

色空間	画像処理	重み
RGB	なし	0.694
	Bilateral Filter	1.000
	CLAHE	0.375
HSV	なし	0.768
	Bilateral Filter	0.606
	CLAHE	0.384

表-4 アンサンブルの重み

「ゴミ」が26663ピクセル、「スカム」が81642ピク セルである。水面部分は「浮遊物なし」と「ゴミ」 と「スカム」を合わせた373555ピクセルとなる。以 上からゴミが水面に占める割合は7%、スカムが水面 に占める割合は22%になる。

5. アンサンブル学習

RGBデータを用いたCNNモデルにより水面浮遊物を 判定できるようになったが、判定精度の一層の向上 を図るためにアンサンブル学習の適用について検討 する。

アンサンブル学習は、独立した複数の判定結果を 用いて最終的な判定を行う方法であり、画像の判定 にアンサンブル学習を適用することで性能が向上し た事例も報告されている¹⁰⁾。

表-2に示す6種類の色空間・画像処理を適用した データセットによって学習させたCNNモデルを用いて アンサンブル学習の有用性を確認する。適用する色 空間はRGBとHSVの2種類、画像処理についてはバイラ テラルフィルター (Bilateral Filter) と適用的ヒ ストグラム平坦化 (Contrast Limited Adaptive Histogram Equalization: CLAHE) および処理なしの 3種類である。なお、HSVは色相 (Hue) 、彩度 (Saturation Chrome)、明度 (Value Brightness) で 構成される色空間である。また、Bilateral Filter はノイズ除去に用いられ、CLAHEは画像のコントラス トを上げる目的で使用される。

色空間・画像処理の適用は、カメラ画像から抜き 出した33×33ピクセルのカラーデータに対して画像 処理および色空間の変換処理を行った後に、CNNモデ ルに入力することで行う。

各CNNモデルについて20epochの学習を行い、判定 を行った。学習データに対する判定結果を表-2に、 検証データに対する判定結果を表-3に示す。1つの データセットを用いた場合の正答率は、学習データ に対しては95.1~95.3%となり、検証データに対し ては82.0~84.0%となった。正答率が最高となるデー タセットは、学習データに対しては色空間HSV・画像 処理CLAHEの組合せであるが、検証データに対しては 色空間RGB・画像処理なしの組合せとなり、学習と検 証で異なる。

アンサンブルでは各CNNモデルに重みを付け、全 CNNモデルの出力とモデルの重みから最終的な判定結 果を決定する。学習データに対する正答数が最大に なるように設定した重みを表-4に示す。この重みを 用いた判定の正答率は学習データに対して95.6%、 検証データに対して84.2%となり、1つのデータセッ トを用いた場合より高い正答率が得られた。

6. 実運用に際して

実際にスカムのモニタリングを行う場合、さまざ まな気象条件においても水面の状態が分かる画像を 取得できるようにする必要がある。河川に浮遊して いるスカムは時間と共に位置が変わるため、短い時 間間隔での画像取得が望ましい。

次に、CNNモデルの学習データを作成するための画 像を取得する必要がある。取得する画像には、ゴミ やスカム等、今後の判定時に画像に映ることが考え られるものが含まれるようにする。

取得した画像からピクセルに映っているものを目 視で判定して学習データを作成する。本検討では、

「水面以外」「浮遊物なし」「ゴミ」「スカム」の

4種類の判定としている。CNNに適切な判定を行わせ るには多くの学習データが必要であるが、学習デー タの作成には多くの労力を要する。このため学習デー タ作成労力の軽減化を図ることが望まれる。

7. まとめ

スカム浮遊量の把握に向けて、東京都立大学との 共同研究でカメラ画像から水面浮遊物を判定する CNNモデルを構築した。

構築したモデルは定点カメラ画像をもとに、潮汐 によって変化する水面の範囲や水面に浮遊している ゴミ・スカムを判定できることを確認した。

スカム浮遊量を継続的にモニタリングすることに よって、スカム対策の取り組みの効果を分かりやす く示すことができると思われる。

CNNモデルを用いることでスカムの継続的なモニタ リングを比較的容易に行うことが可能であるが、現 状ではCNNモデルの学習に用いるデータ作成に多くの 労力を要するため、この作業の軽減化に向けた技術 開発が望まれる。本技術がスカム対策の推進につな がることを期待する。

参考文献

- 山崎正夫、津久井公昭(1991):河川におけるスカムの発生に関する研究(その1) スカムの起源に関する研究、 東京都環境科学研究所年報、1991
- 山崎正夫、津久井公昭(1991):河川におけるスカムの発生に関する研究(その2) 一神田川白鳥橋~飯田橋間の 堆積状況調査結果-、東京都環境科学研究所年報、1991-2
- 3) 山崎正夫、津久井公昭(1992):河川におけるスカムの発生に関する研究(その3) 一降雨後のたい積状況変化について-、東京都環境科学研究所年報、1992
- 4) 北区土木部道路公園課公園河川係:石神井川の臭気対策・環境改善に取り組んでいます、https://www.city.kita.to kyo.jp/d-douro/jutaku/kankyo/bika/documents/syukitaisaku.pdf
- 5) 呑川水質浄化対策研究会(2020):令和元年度呑川水質浄化対策研究会報告書、http://www.city.ota.tokyo.jp/gikai /honkaigi_iinkai/iinkai/iinkaishiryo/r_2/machidukuri/020305.files/04-1_machi_2.3.5.pdf
- 6) 水田周作、高崎忠勝、河村明、天口英雄、石原成幸(2015):定点カメラ画像を用いたニューラルネットワークによる 都市河川のスカム自動判別、土木学会論文集B1(水工学)、Vol. 71、No. 4、I_1231-I_1236
- 7) 大澤健二、石原成幸、高崎忠勝(2015): 定点カメラを用いた都市河川のスカム自動判別、平27. 都土木技術支援・人材 育成センター年報、pp. 201-204

- 8) 加藤奨之、高崎忠勝、河村明、天口英雄、芥田直輝(2021):定点カメラ画像を用いた石神井川感潮域の水面浮遊物判 定モデルの構築、第48回土木学会関東支部研究発表会講演集、II-58
- 9) 芥田直輝、高崎忠勝、河村明、天口英雄、加藤奨之(2021):アンサンブル学習を用いた石神井川感潮区間の水面浮遊 物判定、第48回土木学会関東支部研究発表会講演集、II-68
- 10) 杉原麻美子、Zheng YuchenZheng、内田誠一(2018): CNNを用いたアンサブル学習による画像分類、電気関係学会九州 支部連合大会講演論文集、平成30年度電気・情報関係学会九州支部連合大会(第71回連合大会)講演論文集、セッショ ンID 01-2P-03、p. 416