令 3. 都土木技術支援・人材育成センター年報 Annual Report C.E.S.T.C., TMG 2021

7. 鋼板接着補強 RC 床版の疲労耐久性および樹脂再注入の補修効果

に与える剥離率と水の影響

Effect of Peeling Rate and Water on the Fatigue Durability of Steel Plate Bonding Bridge Slabs and the Repair Effect of Resin Reinjection

技術支援課 大石雅登、前田洋平、〇関口幹夫、名児耶薫

1. はじめに

昭和 48 年道路橋示方書¹⁾以前の基準で設計さ れた鉄筋コンクリート(RC)床版は、床版厚が 薄く、配力鉄筋量が少ないなどの要因により、都 道の過酷な交通環境下では疲労損傷し易い。建設 局の管理橋梁では、昭和 40 年代後半から損傷し た RC 床版に対して鋼板接着補強工法による対策 が 60 橋ほど実施され、対策後既に 40 年以上経過 するものも存在する。近年、定期点検時に接着し た鋼板の剥離(浮き)が確認されているが、その 原因は特定されていない。

そこで、当センターのゴムタイヤ式輪荷重走行 試験機を活用して、主に鋼板剥離部への接着材再 注入による補修効果の検証や剥離率による再補修 の可否を判断するため、表-1 に示す実験シリー ズを平成 27 年度から開始した。

本実験シリーズにおける鋼板接着時の床版損傷 状態は、建設局の「橋梁の定期点検要領」の損傷 ランクd相当²⁾のひび割れ密度15m/m²を標準と している。試験体PL-1~PL-4では、平成29年度 までに再注入を実施する剥離率を4段階(17.6~ 68.2%)に変化させて乾燥条件下での再補修効果 を検討した。その結果いずれの剥離率でもある程 度の補修効果が確認された³⁾⁴⁾。またPL-5 とPL-6 では、補強直後から床版上面に水を滞水させた 水張り条件下での実験により、乾燥条件下に比較 して疲労耐久性が大幅に低下すること⁵⁾。また PL-7とPL-8では、無補強の基準床版の実験によ り補強効果や再注入効果などの検討を行った⁶⁾。 令和元年度には、PL-9とPL-10で丁寧な接着条 件下の水張り条件下での再注入の補修効果につい て検討を行った。その結果、接着強度が強くかつ 貫通ひび割れがない条件下では水の影響を受けな い結果が得られた⁷⁾。令和2年度は最後の実験と してPL-11とPL-12で通常接着の水張り条件下で の再注入効果について検討を行った。

本稿は、令和2年度実施のPL-11~12の実験結 果を取り纏める。併せて本実験シリーズ全ての結 果について総括的な取りまとめを行う。また、別 途実施した実橋の浮きが耐荷性能に与える影響に ついての検討結果についての概要を報告する。最 後に鋼鈑接着床版の定期点検における剥離率とた

			-						
実施 年度	試験体	目的	ハン チ 補強	補強 後水 張り	下面 再注 入	鋼鈑接着時の ひび割れ密度 (m/m ²)	補強時 上面ひ び割れ 本数	再注入 時の剥 離率 (%)	接着時 特記
H27-	PL-1	再注入の	×	×	0	17.7	2	68.2	下地不良
H28	PL-2	効果	×	×	0	14.8	2	33.4	通常施工
H28-	PL-3	再注入の	×	×	0	14.3	3	47.2	通常施工
H29	PL-4	効果	×	×	0	15.2	3	17.6	夏季高温
H29-	PL-5	水張り	0	0	×	15.5	1	-	留坐路上
H30	PL-6	の影響	×	0	×	14.6	1	—	通吊旭工
L120	PL-7	基準床版	—		—	17.2(破壊時)	3	—	毎ばみ
1130	PL-8	の確認	-	-	-	18.0(破壊時)	3	-	
D1	PL-9	上面ひび割	×	0	0	14.9	0	1.9	· 第十章
RI	PL-10	れの影響	×	0	0	14.7	0	17.5	下地丁學
D 2	PL-11	貫通ひび割	×	0	0	16.0	3	4.9	通常施工
RZ	PL-12	れの影響	×	0	0	14.8	4	45.9	下地不良

表-1 実験シリーズの概要

わみ量と損傷ランクの関係についての提案を行う。

2. 輪荷重走行実験方法の概要

(1) 試験体

昭和 39 年道路橋示方書⁸⁾の基準に基づいて設計した試験体の配筋図を図-1 に示す。形状寸法は、幅2.8m(支間2.5m)橋軸方向の長さ3.5m、 床版厚 16cm である。なお、試験体の形状寸法と

図-1 試験体の形状寸法

表-2 鉄筋・鋼板の特性値

	括粘	降伏応力	引張強さ	弾性係数	伸び			
	作主大民	(N/mm^2)	(N/mm^2)	(kN/mm^2)	%			
	鉄筋D10	344.0	465.3	178.9	19.2			
鉄筋D13 343.4		343.4	465.2	183.9	20.6			
	鉄筋D16	330.9	468.4	181.7	20.7			
	接着鋼板	333.0	457.0	-	37.0			

主) 鉄筋は3本の平均値、鋼板はミルシートの値

表-3 コンクリートの配合表

		配合表(kg/m°)									
	セメント	水	細骨材①	細骨材②	粗骨材①	粗骨材②	混和剤*1				
264 178 405			402	507	507	2.64					
	*1:AE減水剤標準形1種 w/c=67.4										

表-4 コンクリート特性値(材齢28日)

供試体	スラン	空気	粗骨材最	圧縮強度	静弾性係数	ポアソン	引張強度
No.	7	囲	天寸法	(N/mm ²)	(kN/mm²)	比	(N/mm ²)
1				25.0	23.9	0.15	1.72
2	14.5	3.4 %	20 mm	20 mm 24.6 24.1 0. 26.4 25.2 0.	0.15	1.88	
3	cm		20 mm		0.19	1.93	
平均				25.3	24.4	0.16	1.84

配筋は、佐野ら⁹⁾の試験結果と比較できるように 同一である。

(2) 使用材料

鉄筋は SD295A の D16、D13、D10 および接着用 鋼板は SS400 板厚 4.5mm であり、その試験結果を 表-2 に示す。コンクリートは、材齢 28 日目標 強度 25N/mm² の生コン (18-8-20-N) を使用した。 コンクリートの配合表を表-3 に特性値を表-4 に示す。図-2 に示すコンクリートの乾燥収縮ひ ずみは、試験体と同じ室内環境下でのコンタクト ストレインゲージ法による。実験終了時(材齢約 500 日)の収縮ひずみは約 670 μ とやや大きい、 質量減少量は約 270 g である。鋼板接着用の接着 材は、専用のエポキシ樹脂でパテ・シール材の品 質を表-5 に示す。注入用接着材の品質を表-6 に示す。

(3) 走行疲労実験方法

輪荷重走行疲労実験は、戸田橋実験場の写真-1のゴムタイヤ自走式の走行載荷装置を使用する。 試験体は、図-3に示す載荷装置の支持桁上に2 体連続(試験体と試験体は接触しないように約

表-5 パテ・シール材の品質

- <u>-</u>			111 * 7 HH 3-	ε,
試験項目	試験方法	単位	規格値	試験値
比重	JIS K7112	-	1.13 ± 0.05	1.13
粘度	JIS K6833	mPa∙s	1000~2000	1500
可使時間	温度上昇法	分	30以上	50
圧縮降伏強さ	JIS K7208	N/mm^2	60.0以上	82.2
圧縮弾性率	JIS K7208	N/mm^2	1500~3500	2350
曲げ強さ	JIS K7203	N/mm^2	50.0以上	82.2
引張強さ	JIS K7113	N/mm^2	35.0以上	57.4
衝撃強さ	JIS K7111	KJ/m ²	3.00以上	4.57
硬さ	JIS K7215	HDD	80以上	83
引張せん断 接着強さ	JIS K6850	N/mm ²	10.0以上	16.4

試験条件:20℃7日間養生後20℃にて測定

表-6 接着材の品質

試験項目	試験方法	単位	規格値	試験値
比重	JIS K7112	-	1.70 ± 0.10	1.7
粘度	垂直ダレ試験	-	ダレ認めず	合格
可使時間	温度上昇法	分	60以上	73
圧縮降伏強さ	JIS K7208	N/mm^2	60.0以上	81.3.
圧縮弾性率	JIS K7208	N/mm^2	4000~8000	6790
曲げ強さ	JIS K7203	N/mm^2	40.0以上	49.9
引張強さ	JIS K7113	N/mm^2	20.0以上	33.8
衝撃強さ	JIS K7111	KJ/m ²	1.50以上	3.61
硬さ	JIS K7215	HDD	85以上	86
引張せん断 接着強さ	JIS K6850	N/mm^2	11.0以上	15.7

試験条件:20℃7日間養生後20℃にて測定

5mm の隙間を開けてゴム板を挿入)して配置し、 床版支間中央をタイヤが走行する方式である。

走行載荷は、階段載荷方式で図-4 に示す載荷 プログラムとした。走行荷重は、都内で観測され る輪荷重の最大値相当の160kNを基本とする。な お、PL-11 は補強後 16.44 万回から 16.52 万回ま での 800 回のみ損傷を促進するため荷重を 180kN に上げている。

(4) 予備載荷によるひび割れの導入

1) ひび割れの導入

建設局における鋼板接着補強対策では、床版下 面のひび割れ損傷ランクc~dで補強する。この ため本実験での初期ひび割れ導入は、ランクdの ひび割れ密度約 15m/m²となる走行回数を目標と した。ひび割れ密度の測定は、床版中央部 2m× 2m の領域で格子密度法により算定した。走行回 数とひび割れの発生・進展状況を図-5 に示す。 ひび割れの発生パターンは、版中央を中心にほぼ 偏りなく発生・進展した。

走行回数とひび割れ密度の関係は図-6 に示す。 PL-11 は 1 回で 5.29m/m²、300 回で 15.97m/m²に 増加した。PL-12 は 1 回で 5.78m/m²、300 回で

図-6 ひび割れ密度の推移

14.78m/m²となり、いずれも 300 回で目標とする ひび割れの導入を完了した。なお、ひび割れ発生 荷重は、目視観察により両試験体ともに 0 回の静 的載荷 100kN で確認した。300 回走行後の上面の 走行面を横断するひび割れ本数は、PL-11 では 3 本、PL-12 では 4 本であった。

2) たわみの推移

床版中央の総たわみと残留たわみと走行回数の 関係を図-7に示す。残留たわみは0回(静的載

図-8(b) PL-12 ひび割れ導入時たわみ分布

荷)のみやや多く、1 回以降は安定している。総 たわみは、100 回以降は微増にとどまっている。 また、橋軸直角方向の活荷重たわみ分布を図-8(a)(b)に示す。PL-11 の1回の中央の活荷重た わみは 4.692mm、300 回は 6.604mm、PL-12 の 1 回は 5.093mm、300 回は 7.282mm である。たわみ の分布形状は、いずれの試験体も左右対称である。

厚板理論によるたわみ計算値との関係は、両試 験体とも0回の静的載荷は、ひび割れ発生直後を 想定した「n=15」たわみ計算値とほぼ一致し、 走行300回では、ひび割れが十分進展した状態の 「n=31」たわみ計算値と一致している。

たわみの理論計算法では、三次元弾性論に基づ く厚板理論(多層版解析)を用いた¹⁰⁾。特に引張 無視時のたわみの計算では、ひび割れの発生した 床版は、剛性の低下した均質弾性体と近似的に見

表-7 断面の状態と特性値

弾性係数比 n=Es/Ec	断面の状態	弾性係数 Ec(N/mm ²)	ポアソン比
n=7.4	全断面有効	24,400	0.16
n=15	ひび割れ発生直後	12,100	0.2
n=31	引張断面無視	5,860	0.2

図-9 たわみ測定値と計算値

なせるとして計算する。ここでは床版の剛性を便 宜的に弾性係数比 (n=Es/Ec)として取り扱い、 Es (主鉄筋の弾性係数)は表-2のD16の測定値、 Ec (コンクリートの弾性係数)は表-4の値とし て、表-7に示す断面の状態を仮定する。走行疲 労で十分にひび割れが発生・進展した状態(貫通 ひび割れあり)は n=31 と仮定する。また、ポア ソン比は、全断面有効時は測定値の 0.16、ひび 割れ断面では 0.2 と仮定する。

中央たわみの0回、1回、300回走行後のたわ み測定値と計算値の関係を図-9に示す。0回で は、荷重100kNでひび割れの発生を目視で確認し ており、剛性は荷重 50kN時まで全断面有効のた わみ計算値(n=7.4)の傾きと一致し、160kN 載 荷時にはひび割れ発生直後の n=15 のたわみ計算 値より大きいが、活荷重たわみの傾きはほぼ一致 している。一方、300回時では、ひび割れ断面無 視相当 n=31 のたわみ計算値とほぼ一致している。

3) 鉄筋ひずみ

主鉄筋の橋軸直角方向のひずみ分布を図-10(a)(b)に示す。0回の最大値は PL-11 では 1,028μ、PL-12 では 1,040μである。走行 1回 以後のひずみ分布は、ほぼ同じ分布形であり、 300回走行の最大値は、PL-11は 1,284μ、PL-12 は 1,418μとやや大きくなっている。また、図- 10 には、厚板理論による引張主鉄筋位置のひず み計算値の分布も併記した。分布形状は近似して いるものの、測定値は、ひび割れの影響により n=31 計算値より 30~40%大きい結果である。

4) 劣化度

鋼板接着前に予備載荷を行った段階での RC 床 版の劣化度を評価する。評価には、松井ら¹¹⁾が 提案している RC 床版の活荷重たわみによる劣化 度評価方法である式(1)を適用した。

$$D\delta = \frac{(W-Wo)}{(Wc-Wo)} \cdot \cdot \cdot \cdot 式(1)$$
ここに、 $D\delta$:劣化度 W :実測活荷重たわみ(mm)

Wo: 全断面有効のたわみ計算値(mm)

図-10(b) PL-12 の主鉄筋ひずみ分布

表-8 予備載荷における RC 床版の劣化度

試験你	*	PL-11	PL-12	備考
活荷重たわみ	1回	4.82	5.23	走行
W(mm)	300回	6.76	7.35	走行
たわれ計管値	Wo(mm)	1.	n=7.4	
にわか前昇胆	Wc(mm)	7.	09	n=31
劣化度 D _∂		0.94	1.05	200回時
ひび割れ密度	₹ (m/m ²)	15.97	14.78	300回时

Wc: 引張無視のたわみ計算値(mm)

劣化度の計算結果を表-8 に示す。劣化度は PL-11 では 0.94、PL-12 は 1.05 である。劣化度 は 1.0 以上で使用限界と評価するので、ほぼ使用 限界状態と評価できる。

(5) 鋼鈑接着および水張試験方法

1) 鋼鈑接着方法

300 回走行のひび割れ導入後に鋼板接着補強を 施工した。補強仕様は、東京都の鋼板接着補強要 領に準じて図-11 に示すハンチ補強なしである。 具体的な鋼板接着の割り付けは、図-12 に示す3 分割とし、添接板の重ね幅は400mm である。

施工手順では、床版下面を写真-2(a)に示す ようにサンダーによるケレンは、通常施工で床版 下面の素地調整を行った。その後、補強鋼板の仮 設置、アンカーの穴あけ ϕ 10.5mm後にアンカー M10×80mmを設置した。なお、接着材の厚さを確 保する厚さ5mmのスペーサを所定量設置し、鋼板 の周囲をシール材でシールした。シール材の硬化 に要する1日養生後に、エポキシ樹脂接着材は写 真-2(b)の足踏みポンプを使用して注入圧力 0.03N/mm²以下で注入パイプ(ϕ 10mm)から、鋼 板とコンクリート面の隙間に充填した。

(b)鋼板取り付け接着材圧入 写真-2鋼板接着施工状況

写真-3 水張り試験状況

2) 水張試験方法

鋼板接着後は約 10 日間の養生を行い、床版上 面に水張り用のプラスチック製の目地棒(高さ 20mm 幅 50mm)を額縁状に接着材で設置した。写 真-3 に示す走行面を除く範囲にスポンジ製養生 シートを敷設して注水を行った。水張りは、1 日 2 回約 5~102 の水道水を注水して、走行面がわ ずかに滞水している状態とした。

3) 再注入方法

補強鋼板の剥離(または浮き)に対する補修法 は、一般的な方法である剥離部にドリルで穴を開 け、エポキシ樹脂接着材を圧入して再接着させる 方法である。注入孔には写真-4(a)の注入用イ ンジェクションを PL-11 では 25 か所、PL-12 で は 123 か所に取り付けた。なお、再注入の接着材 には、最初の接着材と区別するため写真-4(b) に示す赤色の蛍光顔料を混ぜている。インジェク

(a) インジェクター (左) と ゴム風船型注入器(右)

(b) 再注入樹脂(蛍光顔料混入)

(c)注入器のセット写真-4 接着材再注入施工概要

ション固定用の接着材が硬化した後に写真-4(c)のゴム風船型の低圧注入器に接着材を入れ てインジェクションにセットして注入を行った。 また、一回目の再注入の硬化後にたたき点検を行 い未充填個所に二回目の再注入を実施した。再注 入量の合計は PL-11 では剥離率 4.9%に対して 0.138 kg (未充填 0.0%)、PL-12 では剥離率 45.9%に 10.506kg (未充填 0.0%) であった。

3. 走行疲労実験結果

(1) 鋼鈑接着後の実験結果

1) 走行回数と剥離率

剥離面積は、打音点検で剥離領域を判定して図 形ソフトにより描写し算出した。剥離率(%)は (剥離面積/鋼板面積)×100 で求めた。補強後 の走行回数と剥離率の関係を図-13 に示す。 PL-11 は補強後 160kN 載荷の 16.44 万回で剥離 率が 4.9%と少なく荷重を 180kN に上げ 800 回走 行後上面に砂利化が発生する。しかし、剥離率は 4.9%で進展がないので走行を中断して砂利化部 を樹脂モルタルで修復後に再注入して走行を再開 した。再注入後 1,000 回で再度砂利化部を再補修 して走行を再開し、補強後 17.7 万回剥離率 21.6%で破壊した。

一方、PL-12 の剥離率は1 万回時3.3%が4.2 万回で上面の走行中央部に砂利化が進んで剥離率 は45.9%に急増したのでこの時点で再注入を行 った。なお、PL-11の160kN換算走行回数は、RC 床版の松井¹²⁾の式(2)で換算している。

$$N_{eq} = \sum_{i=1}^{n} \left[\frac{P_i}{P_0} \right]^m \cdot n_i \quad \cdot \quad \cdot \quad \ddagger (2)$$

ここに、

 $Neq: 基準荷重 P_o=160$ kN 換算走行回数(回) $P_i: 荷重(kN)$

n_i:荷重*P_i*の走行回数(回)

m:S-N曲線の傾きの逆数(12.76)

補強後から再注入時点の剥離の進展状況を図-14(a)(b)に示す。PL-11は、床版中央部のタイヤ エッジから外側に剥離が広がる通常のドーナツ型 剥離パターンである。PL-12は、補強後1万回ま で微増であったものが4万2千回以降において、 床版中央から合わせ面側でハンチ近傍まで剥離が 一気に進行した。剥離のパターンは、ケレン不足 で一気に剥離が進行した PL-1 と同一である。

2) 補強後たわみの推移

走行回数と床版中央の160kN換算活荷重たわみ の関係を図-15に示す。PL-11は、ひび割れ導入 時の活荷重たわみの最大値は6.604 mmであったが、 補強後は1.460 mm (1.46/6.604=22.1%)に低下し て補強効果が認められる。160 kN換算16.7万回 の剥離率4.9%での再注入前後のたわみは、 1.692 mmから1.383 mmに改善した。破壊時17.79 万回時は1.55 mmと微増であった。

一方、PL-12の補強前は7.282mmであったが補

図-14(a) PL-11 鋼板剥離図(見下げ図)

強後は 1.613 mm (1.613/7.282=22.1%)に低下した。また再注入前後のたわみは 1.313mm で補強時よりやや小さく、破壊時 4.73 万回では 1.633mmと微増で終了した。

写真-5 走行面破壊状況

補強後のたわみ分布を図-16(a)(b)に示す。 PL-11 および PL-12 の補強後のたわみ分布は、実 験終了時まで鋼板が完全合成状態の計算値

「n=7.4」と「n=15」の間に分布する結果となっ ている。たわみが「n=31」に達しなかった理由 は、いずれも走行面に水張りの影響で早期に砂利 化が進み走行不能となり、剥離率が 20%止まり と少ないことが影響したと考えられる。

3) 補強後鉄筋および鋼板ひずみ

主鉄筋の活荷重ひずみの推移を図-17 に示す。 補強前の主鉄筋ひずみは平均 1,351 μ であったも のが鋼板接着により約6%の平均85 μ に低減し、 再注入以降も100 μ を超えることがない。

補強鋼板の主鉄筋方向ひずみの推移を図-18

に示す。補強直後のひずみは、いずれの床版も中 央点の最大値は 250 μ 弱であり、再注入時は 200 μ でその後急増して約 260 μ で終了している。

(2) 再注入後の上面ひび割れと剥離

1) 走行回数と上面ひび割れ

PL-11 の床版上面の損傷状況を図-19(a)に示 す。16.4 万回で走行面に写真-5(a)に示す砂利化 が確認され、樹脂モルタルによる断面修復を行っ ている。その後走行を継続して再注入後 10,000 回で破壊した。上面には、貫通ひび割れが3本確 認される。

PL-12の上面の損傷状況を図-19(b)に示す。 上面には写真-5(b)に示すタイヤ走行面が 5~ 15mm 程度押し込まれている。補強後 4.2 万回後 ほぼ床版中央に砂利化が発生したので樹脂モルタ ルで断面修復後走行を再開している。その後 1,000回で2回目の砂利化が進行して再度断面修 復後に再注入を実施し、再注入後の破壊回数は 4,995 回と少ない。破壊までの走行回数は 47,328回あり、PL-11に比べ 23.7%と少ない疲 労耐久性である。貫通ひび割れ本数は4本である。

2) 再注入後の鋼板剥離

再注入後の剥離は、PL-11 では補強後の図-

図-19(a) PL-11 再注入後走行面の破壊状況

図-19(b) PL-12 再注入後走行面の破壊状況

14(a)とほぼ同様の箇所で剥離が生じ、図20(a)に示す 10,000 回走行した時点の剥離率
21.6%で実験を終了した。一方、PL-12 では再注
入後は中央部から床版合わせ面にかけて図20(b)に示すように点在した小さい剥離が見られ、
剥離率は 2.6%と少量で破壊している。

(3) 切断面ひび割れの検討

1) 切断方法

試験体内部のひび割れの状況を調べるため図-21 に示す位置で 6 分割にダイヤモンドカッター により切断した。矢印は写真の撮影断面を表して いる。

図-20(a) PL-11 再注入後の鋼板剥離図

図-20(b) PL-12 再注入後の鋼板剥離図

2) 橋軸方向切断面のひび割れ

写真-6(a)のPL-11上面の押抜きせん断破壊箇 所(砂利化部)は、橋軸方向中央部である。上側 主鉄筋位置に水平ひび割れが確認できる。鉛直方 向の貫通ひび割れと上面からほぼ 40~45 度の角 度で床版下面に達するひび割れも確認できる。写

(b) PL-12 A-A 断面 写真-6 橋軸方向切断面

(d) PL-12 C-C 断面 写真-7 橋軸直角方向切断面

真-6(b)のPL-12では、中央から左側にかけて破 壊範囲内でほぼ 45 度の押し抜きせん断破壊の斜 めのひび割れがPL-11に比較して多く発生してい るほか、水平ひび割れも確認できる。一方、中央 から右側はひび割れがなく、無損傷に近い状態に なっている。

図-22 劣化度の推移

3) 橋軸直角方向切断面のひび割れ

写真-7(a)(b)の PL-11 では、押し抜きせん断 破壊の状態が水張りの影響でせん断破壊面が限定 的である。また、床版上面で砂利化した部分では、 上側主鉄筋付近に水平ひび割れが確認できる。一 方、写真-7(c)(d)の PL-12 では、床版上面の抜 け落ちた領域からほぼ 45 度の角度でひび割れが 下面まで達して、鋼板を押しているための変形が 確認できる。また、いずれのひび割れにも再注入 の樹脂が多量に注入された痕跡が写真-8(a)に、 比較的ひび割れ幅の小さい領域にも写真-8(b) で確認できる。

(4) 劣化度の推移

補強前→補強後→再注入後の全走行回数と劣化 度の関係を図-22 示す。補強前の PL-11 および PL-12 の劣化度の推移はほぼ同一である。補強前 の最大値は PL-11 で 0.913、 PL-12 で 1.040 と使 用限界の 1.0 に近い。補強後の劣化度は、乾燥条 件下では損傷が進むと劣化度は 1.0 を超えるパタ ーンが一般的であるが、水張条件下では劣化度は 1 を超えないパターンとなることから、劣化度は 適用できないと考えられる。

(5) 重錘落下たわみ

1) 測定方法

重錘落下たわみ測定機(IIS)は、写真-9 に 示す 980N(100kgf)の重錘とたわみセンサー

写真-9 重錘落下たわみ試験

(速度計)とデータ収録解析装置を組み合わせた システムを使用した。たわみセンサーは、床版中 央点と両主桁上に配置して3か所のたわみを同時 に測定し、両主桁を基線とする中央たわみを計測 する。重錘の落下高さは200mm一定とし、重錘の 落下開始から約10秒間(サンプリング間隔は 1000/秒)計測した。また、載荷板(直径35cm) の荷重値で160kN 換算し3回の平均値で求めた。

2) 重錘落下たわみと静的たわみの関係

重錘落下たわみと静的載荷たわみの160kN換算 での比較を図-23(a)(b)に示す。いずれの床版 も補強前(予備載荷)のたわみは、静的載荷に比 べ重錘落下たわみ値は、概ね 1/2~1/3 小さく推 移して安定していない。重錘落下たわみ法が安定 して測定されない理由は、支持桁と床版の接触面 の隙間と浮き上がり防止の影響が考えられる。

一方、補強後は、ほぼ両者は一致していること

が図-23 より読みとれる。したがって、たわみ の全体的な推移では、両者の傾向はほぼ一致して いる。疲労によるダメージをモニタリングする手 法として IIS たわみ量の変化(推移)は、有効な 指標になる。

(6) たわみによる維持管理水準の検討

図-24 は、実験開始から破壊までの活荷重た わみとたわみ計算値の関係を示す。たわみ計算値 は、前述 2.(4)2)「たわみの推移」同様に厚板理 論に基づく多層版解析により求めた。なお、補強 鋼板の静弾性係数(Es)=200kN/mm²と仮定する。 鋼板補強断面のたわみ計算値は表-9に示す。

図-24 の PL-11 と PL-12 では補強前の走行回 数 1 回でひび割れはすでに 5m/m² 程度発生してお り、活荷重たわみは n=15 のひび割れ発生直後の たわみ計算値 3.423mm より大きいが、走行回数 100~300 回では n=31 引張り断面無視のたわみ計 算値 7.068mm に概ね一致している。

補強直後のたわみは、鋼板を考慮した2層版の たわみ計算値 n=7.4 鋼板の 1.070mm より大きい 1.3~1.4mm で推移し、再注入時点で n=15 鋼板の 計算値程度に増加している。再注入後は、一旦補 強直後のレベルまで回復したものの n=15 鋼板の 計算値を超えて破壊した。

一方、図-24の PL-12 は、42,333 回の再注入 直前の剝離面積は 4.9%、たわみは 1.643mm で n=15 鋼板のたわみ計算値 1.710mm より小さい。 再注入後のたわみは 1.313mm に低下して n=15 鋼

表-9 たわみ計算値

		1		1-1/07		-	
160kN換算 走行回数		1	100	300	301	197,996	197,997
	たわみ(mm) 3.423		7.068	7.068	1.710	1.710	2.814
	弾性係数比 n=15		n=31	n=31	n=15鋼板	n=15鋼板	n=31鋼板

板のたわみ計算値を下回り、補修効果が確認できる。その後の走行 4,995 回数で n=15 鋼板のたわみ計算値 1.710mm を超えない 1.633mmで破壊した。

乾燥条件下 PL-1~PL-4 の補強後の剛性回復で は、厚板理論による多層版解析によるたわみ計算 値で評価可能であり、概ね n=31 鋼板を超えると 押し抜きせん断破壊する結果が得られている。一 方、水張り条件下の PL-5~6 および PL-9~10 で は、n=15 鋼板のたわみ計算値を超えると砂利化 が先行して脆性的に破壊しており、図-24 の PL-11~12 も同様な n=15 鋼板の判断が妥当である。

4. PL-1~12 のまとめ

PL-1~12 の実験結果の概要を表-10 に示す。 ひび割れ導入時の回数は、建設局の橋梁定期点検 要領の損傷ランク d に相当するひび割れ密度 15m/m²を目標にした走行荷重160kNの走行回数で ある。Cr はその時のひび割れ密度、表右端から4 列目の接着時上面ひび割れ本数は、走行ラインを 横断する主鉄筋方向のひび割れ本数(切断後に貫 通ひび割れであることを確認)である。

補強~再注入の回数は、補強後から再注入までの走行回数。ただし、PL-5~6 は再注入を行わないで破壊させた回数、PL-7~8 は無補強の基準床版の破壊回数。P1 は再注入時の剥離率である。

補修(再注入)~破壊の注入量は、再注入で使

用した接着材の注入量。回数は再注入後から破壊 までの回数。P2 は破壊後の剥離率である。補強 後の条件は、PL-1~4 は乾燥条件下、PL-5~6 お よび PL-9~12 は水張り条件下である。

(1) 接着強度が疲労耐久性に与える影響

鋼板接着は、鋼板をコンクリート面に接着する 工法であり、接着強度が疲労耐久性に与える影響 は極めて大きいと言える。接着時の下地(素地) 調整の状態の特記事項を補完する目的で、実験終 了後に剥離していない箇所での写真-10に示す 建研式による接着強度を測定した結果を図-25

写真-10 健研式接着強度試験

	ひび割	れ導入時	補強~再	注入	再注入	(補修)~	破壊	補強後	補強時	補強	補修	補強+補	接着時 上面ひ	破壊時 貫通ひ	走行	破壊
試驗休	回釵	Cr	回致	P ₁	汪人重	回致	P ₂	乾燥し	行記	刘木	刘木	修劝木	び割れ	び割れ	山砂	形式
山河大平	回	m/m²	回	%	kg	回	%	水張●		倍率	倍率	倍率	本数	本数	利化	利化
PL-1	2,000	17.7	100,000	68.2	7.0	367,701	59.3	0	下地不良	10.5	38.6	49.1	2	8	0	押抜き
PL-2	2,000	14.8	1,186,206	33.4	2.0	173,486	51.8	0	通常施工	124.5	18.2	142.7	2	6	0	押抜き
PL-3	120	14.3	983,203	47.2	4.1	75,959	41.7	0	通常施工	103.2	8.0	111.1	3	4	0	押抜き
PL-4	120	15.2	983,203	17.6	2.1	165,169	52.8	0	通常施工	103.2	17.3	120.5	3	6	0	押抜き
PL-5	125	15.5	166,317	32.0	—	—	—		通常施工	17.4	—	_	1	4	0	押抜き
PL-6	125	14.6	162,478	19.5	—	—	—		通常施工	17.0	_	—	1	6	0	押抜き
PL-7	1,000	15.2	9,782	_	_	—	—		無補強	平均值	_	—	3	12	0	押抜き
PL-8	1,000	15.4	9,281	_	_	—	—		無補強	1.0	_		3	12	0	押抜き
PL-9	300	14.9	5,401,048	1.9	1.2	6,154,955	0.8		下地丁寧	566.7	645.7	1212.4	0	0	—	未破壊
PL-10	300	14.7	4,625,791	17.5	1.7	3,143	51.9		下地丁寧	485.3	0.3	485.6	0	4	0	押抜き
PL-11	300	16.0	167,696	4.9	0.1	30,804	21.6		通常施工	17.6	3.2	20.8	3	3	0	押抜き
PL-12	300	14.8	42,033	45.9	10.5	4,995	2.6		下地不良	4.4	0.5	4.9	4	6	0	押抜き
注)回]数:160	DkN換算走	行(回)、Cr	:ひび害	れ密度、	P ₁ ,P ₂ :剥离	雛率, 🕇	<mark>卡字</mark> :破壊	₹時, 青字::	未破壊,	倍率の	基準はPL-	-7 ~ 8の平	立均值(95	32)	

表-10 PL-1~12 実験結果の概要

に示す。

PL-1 および PL-12 は、剥離が急激に増加した ケースであり、接着強度は 0.1N/mm²と小さく、 コンクリート面からの剥離でケレン不足の可能性 が高いと推定される。通常接着は、下地調整が普 通の出来上がりで接着強度が PL-5 の概ね 1.0N/ mm²以上あると想定されるケースである。PL-3~ 4 の再注入は、夏季の高温時であり未充填が数% 存在したが実験に影響を与えていないと判断して いる。PL-9~10 は、サンダーのケレン作業時間 を約2倍とし、完全に素地調整を行ったもので接 着強度は 3.1N/mm²でコンクリートの母材で破断 したケースである。

(2) 上面ひび割れが疲労耐久性に与える影響

表-10 のひび割れ導入時の上面ひび割れ本数 は、走行面を横断する図-19 に示した主鉄筋方 向のひび割れ本数で PL-9~10 は 0 本であり、そ の他は概ね 2~3 本発生している。水張り試験で は、この上面ひび割れから水の供給があり早期に 疲労破壊する。一方、PL-9~10 は上面ひび割れ がないために床版内への水の供給がなく、また丁 寧な施工による接着強度が大きい理由から水張り の影響がほとんどない結果となっている。このこ とからも床版内に雨水を入れない防水層の重要性 は明らかである。

(3) たわみと鉄筋ひずみの低減効果

損傷ランク d 相当のひび割れ密度約 15m/m² で 鋼板接着した結果、補強後のたわみは補強前の平 均 18.9%(16.2~22.1%)に減少する。

主鉄筋ひずみは、補強前平均 1,230 μ が補強後 平均 7.3%の 90 μ に減少する効果が確認できた。 また、補強直後の鋼板の主鉄筋方向ひずみは平均 195 μ であったが、破壊時は平均 224 μ で約 15% 増加する程度である。

(4) 補強効果

PL-7~8の基準床版の破壊時走行回数の平均値 9,532回を1倍とする走行回数の比率で表-10の 補強効果と補修効果(再注入効果)を評価する。 表-10の補強効果のPL-9の566.6倍とPL-10の 485.3倍は、PL-2~4の平均110倍の5倍であり 著しく大きい。この水張条件下で乾燥条件より著 しく大きい理由は、丁寧な素地調整で接着強度が 大きく、かつ走行面に貫通ひび割れがない条件下 であったことから、水張であっても水の影響がほ とんどない状態での実験結果となったと考えられ る。すなわち、上面にひび割れがない条件で丁寧 な素地調整での鋼板接着では、接着強度が大きく 水張条件下であっても疲労損傷が生じにくいと言 える。

PL-9~10 を除く他の試験体の補強効果は、図 -26 の第一横棒グラフの倍率で評価する。乾燥 条件下の通常施工 PL-2~4 の補強効果は平均 110 倍、ケレン不足の PL-1 の補強効果は 10 倍で通常 施工 PL-2~4 の 1/10 程度である。一方、水張条 件下の PL-5~6 の補強効果は 17 倍、PL-11 は 18 倍、ケレン不足の PL-12 は 4 倍と小さい。水張 4 体の平均は 14.3 倍であり、乾燥条件下の約 1/8 程度と評価できる。

(5) 再注入の効果

再注入時の剥離率が疲労耐久性に与える影響は、 図-26 の第二棒グラフの再注入効果の倍率は、 乾燥条件下の剥離 17~68%の範囲では、補強効 果の 10%程度の向上に止まる。しかし、基準床 版に対して 8~39 倍の疲労耐久性があり早期の剥 離に対しては、ある程度有効な補修工法といえる。

一方、水張条件下の再注入の効果は、PL-11~12 では3.2~0.5 倍で乾燥条件下の1/7 であり、ほ とんど効果が期待できない。したがって、再注入 工法は、乾燥条件下のみに適用を制限するのがよ い。

(6) 剥離率とたわみによる損傷レベルの評価

鋼鈑接着床版の維持管理では、剥離率とたわみ の関係から適切な閾値を設定することが合理的で あり、橋梁の点検要領の損傷評価に反映させる必 要がある。また、水の影響で疲労耐久性は、大幅 に低下するので「漏水・錆なし」と「漏水・錆あ り」で評価を分けるのが合理的である。

剥離率の閾値は、図-27(a)の乾燥条件下では、 概ね 50%を超えると破壊するので、管理水準に おける破壊の閾値は、安全を考慮して表-11 の

図-27 剥離率による維持管理の閾値

- X 11				
条件 損傷ランク	漏水・錆なし	漏水・錆あり		
a(健全)	損傷が認められないもの	—		
b(ほぼ健全)	浮き20%未満	浮き10%未満		
c(やや注意)	浮き20~40%未満	浮き10~20%未満		
d(注意)	浮き40%以上	浮き20%以上、又は漏水 が著しい場合		
e(危険)	ランクdでアンカーの浮き (緩み)があるもの、落下 した場合に第三者へ影響 を与えるもの	ランクdでアンカーの浮き (緩み)があるもの、橋面 舗装にポットホールや土 砂化などがあるもの		

表-11 打音点検の鋼板浮き率の閾値

ように提案する。損傷ランク d では 20%安全側 の 40%以上、ランク C は 20~40%未満、ほぼ健 全の b は 20%未満とする。また、水張試験の影 響を考慮した「漏水あり」では、図-27(b)の概 ね剥離率が 20%を超えると急激に破壊する傾向 を重視して、ランク d を 20%以上とし、ランク C は 10~20%とする。ランク b は 10%未満を提案 する。

乾燥条件下でのたわみのモニタリングでは、図 -28(a)に示すとおり n=31 鋼板の解析値を超える と破壊することから、表-12(a)に示すたわみの 閾値を提案する。損傷ランク e(危険)はランク

表-12(a) 乾燥条件下のたわみの閾値

損傷ランク	計算値Dの条件	実測値 δ	第三者への影響					
a(健全)	n7-0	D>δ						
b(ほぼ健全)	n7-0~n15-0	$D = \delta$	+-1					
c(やや注意)	n15-0~n31-0	$D = \delta$	なし					
d(注意)	n31-0	D<δ						
e(危険)	n31-0	$D < \delta$	あり					

表-12(b) 漏水有り条件下のたわみの閾値

損傷ランク	計算値Dの条件	実測値 δ	土砂化	第三者への影響
c(やや注意)	n15-0	D>δ	あり	
c(やや注意)	n15-0	D<δ	なし	なし
d(注意)	n15-0	D<δ	あり	
e(危険)	n15-0	D<δ	あり	あり

d (n31-0以上) で第三者への影響あり又はn15-2 (引張無視で鋼板非合成) 以上、ランク d (注 意) は n31-0 以上、ランク c (やや注意) は n15-0~n31-0、ランク b (ほぼ健全) は n7-0~ n15-0 とする。一方、水張り試験条件下の「漏水 あり」では、図-28(b)のようにn=15鋼板を超え ると急激に破壊する傾向があるので、漏水有り条 件のたわみの閾値は表-12(b)に示す提案を行う。 損傷ランク e (危険) は、ランク d (注意) n15-0 以上で第三者の影響大の場合、ランク d (注意) は n 15-0 以上で土砂化ありの場合、ランク c (やや注意) は n 15-0 以上で土砂化なし第三者 の影響なし、又は n 15-0 以下で土砂化あり第三 者の影響なしとする。

5. 実橋の浮きが耐荷性能に与える影響の調査

(1) 調査橋梁の概要

調査橋梁の諸元および調査概要を表-13 に示 す。調査橋梁は、5 橋で鋼板接着補強床版を有し、 定期点検で浮きが確認されている中から選定した。 適用道路橋示方書(道示)は、昭和31年と39年 が多く、高井戸陸橋のみ昭和48年道示である。 鋼板接着後の経過年数は30年~45年である。高 井戸陸橋は、2,000年に上面増厚(SFRC)で再補 強されている。天王洲大橋も鋼板接着のほか上面 増厚による補強が実施されている。

調査パネル数は、IIS を用いた重錘落下たわみ 法による調査パネル数であり、浮き率はパネルの 浮き(剥離)の範囲である。路面温度は、たわみ の解析で舗装の弾性係数を設定するための測定値 である。交通量区分は、調査地点の想定値である。 尾久橋の注入前は、浮きが 94~98%で全面剥

写真-11 尾久橋の鋼板の錆の状態 離状態であったが、その原因は、補強時の鋼板接 着面の錆止めプライマーの仕様がジンクリッチプ ライマーであり、エポキシ樹脂との相性が悪い (接着強度が小さい)¹³⁾ことが原因と推定され た。写真-11に示す鋼板を25 mmのコアでサンプ リングして調査した結果、剥離面は鋼板と樹脂の 間で、その隙間は隙間ゲージで0.5~1mm であっ た。10×10cm の鋼板サンプリングの表面は、全 面的に赤サビ状態であるものの、孔食はない状態 であった。このことから接着後比較的早期に接着 強度の低下による剥離が進行したものと考えられ る。尾久橋では、再注入前、再注入後および縦桁 増設後にたわみを測定した。

天王洲大橋は、20年前に鋼板の浮きに再注入 を行うとともに、一部浮きの範囲が大きいパネル では鋼板を撤去して再接着している。その後約 20年経過した時点で浮きの進行が確認され再注 入を行うにあたり、再注入の前後でたわみを測定 して評価するものである。

(2) 調査方法

たわみ測定方法

たわみの測定は、当センター開発の重錘落下た わみ法(IIS法)による。測定システムの概念図 を図-29に示す。IISは100kgfの重りを自由落 下させる装置であり、載荷板の大きさは35×

	ない。夏田高大ジョンに夏田高文																	
橋梁名	竣工年	道示	径間長 (m)	幅員 (m)	形式	床版厚 (cm)	床版支間 (m)	横桁間 隔(m)	舗装 厚(cm)	鋼板接着 年	経過 年数	調査パ ネル数	浮き率 (%)	調査年月日	気温 (℃)	路面温度	交通量 区分	備考
青山橋	昭和39	昭和31	33.7	15.6	単純3鋼箱桁	18	2.55	5.5	7	1983.3	35	6	0~30	2018/2/27	10	15	В	_
高井戸陸橋 (中央径間)	昭和45	昭和48	30+40 +30	14.0	3径間連続2鋼箱桁	18+5(SFRC)	2.3	5	7	1988.3	31	6	0~20	2019/9/9	28	25	E	人工軽量コン クリート床版
高井戸陸橋 (側径間)	昭和45	昭和48	20	14.0	活荷重合成鋼板桁	18+5(SFRC)	2.3	5	7	1988.3	31	4	0~2	2019/9/9	28	25	E	普通床版
堀切橋	昭和30	昭和31	43	17.7	ゲルバー式I桁	20	4.0(2.0)	5.7	5	1984.11	35	7	0~15	2019/9/3	28.5	30	D	
天王洲大橋	昭和38	昭和31	36.2	15.0	活荷重合成鋼板桁	18+5(SFRC)	2.4	4.7	5	1976.3	44	12	0~40	2020/8/22	33	46.5	D	注入前
天王洲大橋	昭和38	昭和31	36.2	15.0	活荷重合成鋼板桁	18+5(SFRC)	2.4	4.7	5	1976.3	45	12	0	2021/1/16	10.3	15	D	注入後
尾久橋(下り)	昭和43	昭和39	25.3	13.0	単純2鋼箱桁	19	3	6.3	5	1989.3	30	8	94~98	2019/12/14	9.6	14	С	注入前
尾久橋(下り)	昭和43	昭和39	25.3	13.0	単純2鋼箱桁	19	3	6.3	5	1989.3	31	8	0	2020/7/25	31.5	49	С	注入後
尾久橋(下り)	昭和43	昭和39	25.3	13.0	単純2鋼箱桁	19	3(1.5)	6.3	5	1989.3	31	8	0	2020/9/26	26.3	39.2	С	縦桁増設後

表-13 調査橋梁の諸元と調査概要

図-29 IIS 測定システムの概要図

35cm、衝撃荷重は載荷板に組み込んであるロー ドセルで計測する。衝撃荷重で床版は振動するの で、その振動を速度計(変位同時出力)で計測す るシステムである。速度計は概念図のとおり床版 を支持している両主桁上とその中央(1/2)およ び1/4(3/4)点の5か所の舗装面で計測する。 また、代表的な1パネルでは、概念図に示すとお り床版下面に変位計を取付けて検証できるように 測定する。測定は、パネル単位でパネル中央(A 点)と横桁から1mのB点でそれぞれ5回程度測 定して3回の平均値を求める。また、測定車線の みの交通規制であるため一般車両の通行により橋

表-14 三層版解析モデル(1)

凡例記号	青山橋、堀切橋、尾久橋の三層版モデル
n7-0	舗装+RC床版(n7)+鋼板、完全合成(-0)
n7-1	舗装+RC床版(n7)+鋼板、舗装剥離状態(-1)
n7-2	舗装+RC床版(n7)+鋼板、鋼板剥離状態(-2)
n15-0	舗装+RC床版(n15)+鋼板、完全合成(-0)
n15-1	舗装+RC床版(n15)+鋼板、舗装剥離状態(-1)
n15-2	舗装+RC床版(n15)+鋼板、鋼板剥離状態(-2)
n31-0	舗装+RC床版(n31)+鋼板、完全合成(-0)
n31-1	舗装+RC床版(n31)+鋼板、舗装剥離状態(-1)
n31-2	舗装+RC床版(n31)+鋼板、鋼板剥離状態(-2)

表-15 三層版解析モデル(2)

凡例記号	高井戸陸橋、天王洲大橋の三層版モデル
n7-0	舗装+(増厚+RC床版)(n7)+鋼板、完全合成(-0)
n7-1	舗装+(増厚+RC床版)(n7)+鋼板、舗装剥離状態(-1)
n7-2	舗装+(増厚+RC床版)(n7)+鋼板、鋼板剥離状態(-2)
n15-0	舗装+(増厚+RC床版)(n15)+鋼板、完全合成(-0)
n15-1	舗装+(増厚+RC床版)(n15)+鋼板、舗装剥離状態(-1)
n15-2	舗装+(増厚+RC床版)(n15)+鋼板、鋼板剥離状態(-2)
n31-0	舗装+(増厚+RC床版)(n31)+鋼板、完全合成(-0)
n31-1	舗装+(増厚+RC床版)(n31)+鋼板、舗装剥離状態(-1)
n31-2	舗装+(増厚+RC床版)(n31)+鋼板、鋼板剥離状態(-2)

梁は常に振動している中での測定であるが、測定 波形を処理することで主桁間のたわみを算定する。

2) 剥離率の調査方法

剥離率は、高所作業車を使用してパネル単位の 剥離面積を打音点検で測定して算出した。なお、 天王洲大橋の剥離率は一建の調査結果を用いた。

3) 理論たわみの計算法

理論たわみの計算は、三次元弾性論に基づく厚 は板理論の多層版解析によって計算する。計算プ

表-16 青山橋の弾性係数

\sum	断面の状態	弾性係 数比(n)	弾性係数 (N/mm ²)	ポアソ ン比	備考
舗装t=50	全断面有効	-	6,000	0.35	気温10℃
** **	全断面有効	7.0	28,000	0.17	60
普通床版 +=180	ひび割れ初期	15.0	13,300	0.20	一般
1-100	ひび割れ末期	31.0	6,450	0.20	희 3 정
鋼板t=4.5	全断面有効	-	200,000	0.30	ミルシート

表-17 高井戸陸橋の弾性係数

	断面の状態	弾性係 数比(n)	弾性係数 (N/mm ²)	ポアソ ン比	備考
舗装t=50	全断面有効	_	3,000	0.35	気温28℃
増厚	全断面有効	7.5	27,000	0.17	++=
(SFRC)	ひび割れ初期	15.0	13,300	0.20	施工時テータ
t=50	ひび割れ末期	31.0	6,450	0.20	
ᅓᆸᅷᄠ	全断面有効	15.0	13,500	0.20	7.由于几.0十 口 555
	ひび割れ初期	19.0	10,800	0.22	建設時品貨
1-100	ひび割れ末期	37.0	5,400	0.22	B42/ /
**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	全断面有効	8.0	25,000	0.17	
普通床版 +=180	ひび割れ初期	15.0	13,300	0.20	HI2コア データ
1-100	ひび割れ末期	31.0	6,450	0.20	
鋼板t=4.5	全断面有効	-	200,000	0.30	ミルシート

表-18 堀切橋の弾性係数

\sum	断面の状態	弾性係 数比(n)	弾性係数 (N/mm ²)	ポアソ ン比	備考
舗装t=70	全断面有効	-	3,000	0.35	気温28.5℃
**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	全断面有効	7.0	28,000	0.17	<u>фП.</u>
音通床版 +=200	ひび割れ初期	15.0	13,300	0.20	一般
0 200	ひび割れ末期	31.0	6,450	0.20	
鋼板t=4.5	全断面有効	-	200,000	0.30	ミルシート

表-19 天王洲大橋の弾性係数

	断面の状態	弾性係 数比(n)	弾性係数 (N/mm ²)	ポアソ ン比	備考
舗装t=50	全断面有効	—	2,000	0.35	注入前
舗装t=50	全断面有効	-	7,000	0.35	注入後
増厚	全断面有効	7.0	28,000	0.17	<u>фП.</u>
(SFRC)	ひび割れ初期	15.0	13,300	0.20	一般
t=50	ひび割れ末期	31.0	6,450	0.20	
**`로는 네	全断面有効	7.0	28,000	0.17	<u>фП.</u>
音通床版 +=180	ひび割れ初期	15.0	13,300	0.20	一般
100	ひび割れ末期	31.0	6,450	0.20	희 3 정
鋼板t=4.5	全断面有効	-	200,000	0.30	ミルシート

表-20 尾久橋の弾性係数

	断面の状態		弾性係数 (N/mm ²)	ポアソ ン比	備考
舗装t=50	全断面有効	-	9,000	0.35	注入前
舗装t=50	全断面有効	-	2,000	0.35	注入後
舗装t=50	舗装t=50 全断面有効		2,000	0.35	縱桁増設後
***	全断面有効	7.0	28,000	0.17	én
普通床版 +=190	ひび割れ初期	15.0	13,300	0.20	一般
100	ひび割れ末期	31.0	6,450	0.20	
鋼板t=4.5	全断面有効	-	200,000	0.30	ミルシート

ログラムが3層版であることから、青山橋、堀切 橋および尾久橋は、版構成が「舗装+RC 床版+ 鋼板」の三層版モデルを表-14 に示す。増厚補 強済みの高井戸陸橋と天王洲大橋は、表-15 の 「舗装+(増厚+RC 床版)+鋼板」の三層版モ デルとする。なお、表-14~15 の凡例記号の末 尾の「-0 は完全合成状態」、「-1 は舗装が剥離 状態」、「-2 は鋼板が剥離状態」を意味している。 また計算は単純版として計算し、100kN 換算の測 定たわみと比較する方法で評価する。

計算に使用する舗装の弾性係数は、測定時の気 温により変動するため路面温度を測定して久保 ら¹⁴⁾のデータを参考に設定している。調査橋梁 の弾性係数の値を表-16~20に示す。

(2) 調査結果

各調査橋梁のパネルA点のたわみ測定値の主鉄 筋方向の100kN換算たわみ分布とたわみ計算値の 関係を整理して、測定値の分布が計算値の分布と 整合性が取れていることを確認する。次に各パネ ルの剥離率と100kN換算のたわみ測定値およびた わみ計算値の関係を表に取りまとめ、測定剥離率 は打音点検の表-11 の閾値で損傷ランクを評価 する。また、測定たわみは表-12 のたわみの閾

図-30 青山橋たわみ分布

表-21 青山橋剥離とたわみの損傷ランクの評価

青山橋									
パネル	剥离	准率	A	点	B点				
番号	%	ランク	mm	ランク	mm	ランク			
7	0.0	а	0.508	b	0.383	а			
8	6.7	b	0.576	b	0.560	b			
9	1.7	b	0.462	b	0.503	b			
10	30.0	с	0.467	b	0.446	b			
11	0.0	а	0.507	b	0.474	b			
12	7.9	b	0.435	b	0.418	b			
n7-0			0.412						
n15-0			0.586		_				
n31	1-0		0.758		—				

値で損傷ランクを評価する。

1) 青山橋¹⁴⁾

青山橋の弾性係数の解析条件を表-16 に示す。 たわみの測定分布は図-30 のとおりであり、測 定値は計算値n7-0(全断面有効)とn15-0(ひ び割れ初期)の間に分布し正常な状態である。表 -21の剥離0~30%の損傷ランクはaが2、bが 3、cが1パネルである。たわみの損傷ランクは、 A点は6パネルすべてb、B点はaが1、残り5 パネルはbである。したがって、剥離の損傷ランク はほぼランクbであり、概ね補強直後の「ほぼ健 全」な状態を維持していると評価する。

2) 高井戸陸橋

軽量床版は表-17 の解析条件で設定した弾性 係数が 13.5kN/mm²と小さいことからひび割れ初 期は n19 に、ひび割れ末期は n37 と仮定してい る。表-22 の中央径間の軽量床版の剥離 0~ 18.2%の損傷ランクは a が 1、残り 5 は b である。 一方、たわみは c が 5、d が 1 と悪く評価される。 この d ランクのパネル番号 6 は、剥離は 2.8% (ランク b)と小さいが、伸縮装置近傍の桁端の

表-22 高井戸陸橋剥離とたわみの損傷ランク

の	評	価
---	---	---

	高井戸陸橋主径間(軽量床版)											
パネル	剥离	准率	A	点	B点							
番号	%	ランク	mm	ランク	mm	ランク						
1	17.8	b	0.389	с	0.377	с						
2	0.0	а	0.371	С	0.362	С						
3	12.0	b	0.362	с	0.366	с						
4	18.2	b	0.362	С	0.345	b						
5	3.0	b	0.370	с	0.377	с						
6	2.8	b	0.540	d	0.472	d						
n7.5+n19-0			0.289		_							
n15+n19-0			0.352									
n15+r	137–0		0.411		_							
n15+r	119-2		0.716		_							

図-32 高井戸陸橋普通床板のたわみ分布 表-23 高井戸陸橋剥離とたわみの損傷ランク

の	平価	
---	----	--

高井戸陸橋側径間(普通床版)										
パネル	剥离	淮率	A	点	B点					
番号	%	% ランク mm ランク		ランク	mm	ランク				
7	1.4	b	0.320	с	0.243	b				
8	1.0	b	0.335	С	0.310	С				
9	1.2	b	0.340	с	0.296	с				
10	10 0.0		0.306	С	0.290	b				
n7+1	15-0		0.238							
n15+	15-0		0.291		_					
n15+	n15+31-0				_					

床版であることから上面増厚の剥離の可能性が考 えられる。また、側径間の普通床版の剥離 0~ 1.4%は損傷ランク a が 1,その他は b である。 たわみの評価は、全体にランク c (やや注意)が 多い。交通量が都内でも最も過酷な路線であるこ

図-34 天王洲大橋たわみ分布

表-25 天王洲大橋剥離とたわみの損傷ランクの評価

天王洲大橋				再注入	前(mm)		再注入後(mm)				
パネル	剥离	淮率	A	A点		B点		点	B点		
番号	%	ランク	mm	ランク	mm	ランク	mm	ランク	mm	ランク	
1	7.0	b	0.346	b	0.360	с	0.313	с	0.297	с	
2	12.8	b	0.283	b	0.312	b	0.260	b	0.277	b	
3	7.0	b	0.323	b	0.298	b	0.283	b	0.252	b	
4	6.1	b	0.214	а	0.222	b	0.198	b	0.223	b	
5	19.6	b	0.283	b	0.240	b	0.228	b	0.212	b	
6	2.1	b	0.301	b	0.308	b	0.273	b	0.269	b	
9	12.6	b	0.360	с	0.352	b	0.301	С	0.299	с	
10	27.9	с	0.280	b	0.293	b	0.256	b	0.263	b	
11	39.4	с	0.292	b	0.298	b	0.260	b	0.256	b	
12	10.5	b	0.256	b	0.231	b	0.248	b	0.233	b	
13	17.9	b	0.304	b	0.290	b	0.270	b	0.262	b	
14	41.6	d	0.337	b	0.318	b	0.290	с	0.266	b	
n7-0			0.221				0.194				
n15-0			0.358				0.288				
n31-0			0.537		_		0.387		_		
n15-2			0.592		_		0.461		_		

図-33 堀切橋たわみ分布

表-24 堀切橋剥離とたわみの損傷ランクの評価

堀切橋											
パネル	剥离	隹率	A	点	B点						
番号	%	ランク	mm	ランク	mm	ランク					
1	3.3	b	0.340	с	0.322	с					
2	15.1	b	0.380	с	0.306	с					
3	4.8	b	0.291	b	0.242	b					
4	4.4	b	0.256	b	0.232	b					
5	0.0	а	0.284	b	0.269	b					
6	3.1	b	0.320	с	0.300	b					
7	2.9	b	0.311	с	0.291	b					
8	0.0	а	0.228	b	0.192	а					
9	0.0	а	0.241	b	0.226	b					
n7	-0		0.203								
n15	5-0		0.304								
n31	-0		0.416		_						

とから、注意深くモニタリングを継続することが 望まれる。

3) 堀切橋

堀切橋の弾性係数の解析条件を表-18 に示す。図-33 のたわみの分布では、 n7-0~n31-0の広範囲に分布して変動 が多い。表-24の剥離0~15.1%のラン ク a が 3、b が 6 パネルである。たわみ の評価は、b が 70%と多く c が 30%で、 ほぼ健全な状態を維持していると評価 できる。

4) 天王洲大橋

天王洲大橋の弾性係数の解析条件を 表-19 に示す。再注入前のたわみ測定 分布を図-34(a)に、再注入後のたわみ 分布を図-34(b)に示す。再注入前は n 7-0~n15-0の間に分布していたが、再 注入後は n15-0~n 31-0の間に分布す るものが多い。表-25の剥離 2.1~ 41.6%の損傷ランクは、11 パネルはラ ンクb、cが 2、dが 1 パネルである。 一方、たわみの評価は、再注入前と再

表-26 尾久橋剥離とたわみの損傷ランクの評価

	尾久橋 再注入前(mm)					再注入後(mm)				桁増設後(mm)				
パネル	剥离	推率	A点		B点 A点		B点		A点		B点			
番号	%	ランク	mm	ランク	mm	ランク	mm	ランク	mm	ランク	mm	ランク	mm	ランク
1	97.3	d	0.964	d	0.754	с	0.998	с	0.813	b	0.567	b	0.469	а
2	97.4	d	0.768	с	0.719	с	0.710	b	0.821	b	0.485	а	0.304	а
3	97.9	d	0.696	с	0.664	с	0.782	b	0.777	b	0.451	а	0.356	а
4	97.6	d	0.971	d	0.957	d	1.147	с	1.212	с	0.618	b	0.463	а
5	96.7	d	0.835	d	0.626	b	0.926	с	0.655	b	0.569	b	0.400	а
6	94.3	d	0.784	d	0.784	d	0.953	с	1.075	с	0.708	b	0.493	а
7	98.2	d	0.640	с	0.637	с	0.724	b	0.757	b	0.440	а	0.378	а
8	98.3	d	0.753	с	0.745	с	0.906	с	0.924	с	0.564	а	0.388	а
n7	-0		0.455		—		0.565		—		0.565		—	
n15	5-0		0.627		_		0.883		—		0.883		_	
n31	1-0		0.783				1.282				1.282			
n15	5-2		1 0 6 0		_		1 563				1 5 6 3		_	

注入後でほとんど変化がなく全体にランクbが多い。再注入の効果が明確に確認できない理由は、 上面増厚で補強済みであることから剥離の原因が 疲労損傷に起因するものでなかった可能性が高く、 床版は余り損傷していない可能性がある。

5) 尾久橋

尾久橋の弾性係数の解析条件を表-20 に示す。 再注入前のたわみ測定分布を図-35(a)に、再注 入後のたわみ分布を図-35(b)に、縦桁増設後の 分布を図-35(c)に示す。表-26の再注入前の剥 離は 94.3~98.3%と全面剥離状態であるが、第 三者への影響がないため損傷ランクはdと評価さ れる。たわみの損傷ランクは、注入前はランクd が 40% でランク c が 60%、注入後はランク c が 50%でランクbが 50%に改善、桁増設後はラン クbが25%でランクaが75%と大幅に改善して いる。したがって、再注入前の状態は、ひび割れ 初期の鋼板合成〜鋼板非合成の間に分布しており、 明らかに疲労の影響がある。しかし、n15-2 (鋼板非合成)を超えていないことから、全面的 な剥離状態であったもののアンカーが有効に機能 している状態と推察できる。

尾久橋を除く青山橋、高井戸陸橋、堀切橋、天 王洲大橋の浮き(剥離)0~40%は、交通荷重の 疲労損傷で発生したものではなく、接着時の充填 不足や下地処理による接着強度の変動など初期欠 陥に起因する浮きの可能性が高いと評価できる。 また、尾久橋の再注入や縦桁増設による補修効果 は、たわみを測定することで明確に評価すること が可能である。漏水がない場合の浮きに対する再 注入による補修方法は、有効な方法であることが 実橋においても確認された。

6. あとがき

鋼板接着工法は、床板コンクリートの品質と接 着強度に問題がない限り、無補強に比べ100倍以 上の疲労耐久性を有している。補強後30~40年 で浮き(剥離)0~40%が確認されるケースの多 くは、たわみを測定して解析的に検討した結果、 疲労損傷による剥離ではない結果であり、疲労損 傷以外のケレン不足や接着強度不足などの「初期 欠陥」に起因する浮き(剥離)を持つ床版に限定 されると考えるのが妥当である。

一方、輪荷重による疲労損傷が進行すると鋼板

の剥離も増加・進行する。水張り試験の結果では、 乾燥条件下に比較して疲労耐久性が 1/8 に低下す る。また、貫通ひび割れの存在が水の影響を大き く左右する要因になる。再注入による補修は、乾 燥条件下では有効であるが、水張り試験では効果 が期待できないことを示した。これらの成果から 「漏水・錆あり」と「漏水・錆なし」の条件で損 傷ランクを評価する提案を行い、実橋に適用して 検証した結果、概ね妥当な評価となることを確認 した。なお、走行位置との関係から疲労損傷でな い浮き(剥離)は、疲労破壊に直結しないことか ら経過観察で十分であり、効率的な維持管理に努 めることが重要である。

都道の鋼板接着補強床版の施工実績は、60 橋 余りで概ね施工後20年から40年経過している。 過去の橋梁定期点検では、漏水などの異常がない 限り、鋼板のたたき点検は省略しており、浮きの 実態は十分把握されていない。次回の定期点検か ら必ずたたき点検を実施して確実なモニタリング を進める必要がある。

参考文献

- 1) (社) 日本道路協会:道路橋示方書·同解説(昭和48年2月)
- 2) 東京都建設局:橋梁の点検要領(案)、平成29年7月
- 3) 関口幹夫、石田教雄、栗塚一範(2017):鋼板接着補強床版の接着材再注入による補修効果に関する実験的 検討、平29都土木技術支援・人材育成センター年報、53-68
- 4) 石田教雄、関口幹夫、今吉計二(2018):鋼板接着補強床版の接着材再注入による補修効果に関する実験的 検討、平 30 都土木技術支援・人材育成センター年報、85-100
- 5) 名児耶薫、今吉計二、関口幹夫、石田教雄(2019):鋼板接着補強床版の水張り条件下での走行疲労耐久性、 令元都土木技術支援・人材育成センター年報、121-134
- 6) 名児耶薫、今吉計二、関口幹夫、石田教雄(2019):昭和 39 年道路橋示方書に基づく RC 床版の疲労耐久性、 令元都土木技術支援・人材育成センター年報、135-144
- 7) 名児耶薫、関口幹夫、今吉計二(2020):鋼板接着補強床版の上面ひび割れの走行疲労耐久性への影響、令2 都土木技術支援・人材育成センター年報、49-64
- 8) (社) 日本道路協会: 鋼道路橋設計示方書(昭和 39 年 6 月)
- 9) 佐野正、山下幸生、松井繁之、堀川都志雄、久利良夫、新名勉(2011):浮きを有する鋼板接着補強 RC 床版 の疲労耐久性および樹脂再注入の評価、土木学会論文集、A1(構造・地震工学)、Vol.67、27-38
- 10) 関口幹夫、佐々木俊平(2007): IIS による各種床版の健全度の評価、平 19. 都土木技術センター年報、229-240
- 11) 松井繁之、前田幸雄(1986): 道路橋 RC 床版の劣化度判定方法の一提案、土木学会論文集、第 374 号、419-426
- 12) 松井繁之(1991):橋梁の寿命予測、安全工学 Vol. 30、No6、432-440
- 13) ショーボンド建設:ショーボンドグラウト防錆プライマー処理による接着性、SHO-BOND TECHNICAL DATA、 R-TKE060830
- 14) 久保和幸、寺田剛、堀内智司、井谷雅司(2010): 舗装構造の理論設計の高度化に関する研究、(独) 土木研 究所平成 22 年度重点プロジェクト研究報告書、1-16
- 15) 石田教雄、関口幹夫、今吉計二(2018):青山橋 RC 床版の接着鋼板の剥離が耐荷性能に与える影響、平 30 都土木技術支援・人材育成センター年報、101-106