1. 東京都3次元地盤モデル作成システムの構築(その3) Tokyo Three-Dimensional Ground Condition Model Construction System (No.3)

技術支援課 名兒耶 薫、町田 晋、〇中山 俊雄、辻 昌宏

1. はじめに

地盤の3次元モデルの構築は、大学や地質系コンサル等で開発が進められている。野々垣(2011)¹⁾は、国内外の3次元地質モデリングシステム5 例を取りあげ、地層境界面の表現方法、推定方法、 地質分布の決定方法、モデルの保存形式、コスト 等の視点から比較検討を行ない、それぞれの3次 元地盤モデリングシステムは、目的・用途に対応 した特徴を有していることを示した。

当センターでも、これまで Make Jiban、 Geomap3D の 3 次元地盤モデリングシステムを採 用し、空堀川流域、野川流域を対象に 3 次元地盤 モデルの構築を行ってきた^{2,3)}。

今回は、石神井川・神田川流域(山の手台地北 部)を対象地として3次元モデルの作成を行っ た。この地域には多くの地質柱状図は存在するが、 地下地質構造が複雑で、いまだ未解明な地域が含 まれる。そこで、後日新たな知見が加わり修正の 必要が生じることを想定し、それに対応できるこ とを考慮し、かつ CAD 対応できる Georama アプリ を採用し、地盤の3次元モデルの作成を試みた。

2. 3次元地質モデル作成の流れ

対象地域は、石神井川・神田川流域を含む山の 手台地北半部、東西 22 km、南北 17 kmの地域であ る (図 - 1)。

3 次元地盤モデリング作成のための流れ図を 図-2 に示す。

(1) 地質柱状図の測線投影

南北1km間隔の東西測線17本に対して、各測 線から南北垂直方向に距離100mの範囲内にあ る地質柱状図を投影した東西測線投影図を作成 する。 (2) 示準層相断面 図の東市線
 この東西測線投
 この東にある地とN
 記図上にある相とい
 記図とを、岩和とた
 層相基分(表-1)
 線対応、東で属相とし、
 (表して)、
 (表し

表一1 層相区分

	X	· /自] Ц		
ローム	0~4	5以上		
粘土	0~5	6~10	11~30	31以上
シルト	0~5	6~10	11~30	31以上
砂	0~10	11~30 31以上		
砂礫	0~30	31以上		

表-2 地質区分表

			1 100
時代	記号	地層名	土質
沖積層	F	表土・盛土・埋土	-
	Lm	ローム層	火山灰質土
	Lo	粘土質ローム層	火山灰質粘性土
	Yu	有楽町層上部	砂質土
	Ym	有楽町層中部	砂質土
	ΥI	有楽町層下部	粘性土
	Nau	七号地層上部	粘性土・砂質土
	Nal	七号地層下部	礫質土
	-30BG	-30m基底礫層	礫質土
	-40BG	-40m基底礫層	礫質土
	-45BG	-45m基底礫層	礫質土
	-15Btg	-15m埋没段丘礫層	礫質土
	-20Btg	-20m埋没段丘礫層	礫質土
	-30Btg	-30m埋没段丘礫層	礫質土
	Ak (Ho) s−1	赤羽層・本郷層(砂層-1)	砂質土
	5 g	5m段丘礫層	礫質土
	Ak (Ho) s-2	赤羽層・本郷層(砂層-2)	砂質土
	-5∼-10 g	-5~-10m段丘礫層	礫質土
	Ak (Ho) c	赤羽層・本郷層(粘土層)	粘性土
	20g	20m段丘礫層	礫質土
	Nms-1	成増層(砂層-1)	砂質土
洪積層	10g	10m段丘礫層	礫質土
	Nms-2	成増層(砂層-2)	砂質土
	Tos-1	東京層(砂層-1)	砂質土
	Toc-1	東京層(粘土層-1)	粘性土
	Tos-2	東京層(砂層-2)	砂質土
	Toc-2	東京層(粘土層-2)	粘性土
	-35g	-35m段丘礫層	礫質土
	-40g	-40m段丘礫層	礫質土
	Img	芋窪礫層	礫層
	Ed	江戸川層	礫質土

(3) 示準地質断面図の作成

各示準層相断面図から、既存文献を参考に、 沖積層、ローム層、本郷層、武蔵野礫層、東京 層群、上総層群に地質区分を行い、これを示準 地質断面図とした。

石神井川・神田川流域の3次元地盤モ 3. デルの紹介

石神井川・神田川流域を含む、山の手台地北半 部の地盤モデルの作成を、操作手順に従い説明す る。

3次元地盤図ファイルを開く

は

断

50.

60

断面図が並列し

くと図ー3 の作	東西断面図 (NO25.pdf)
業画面が表示さ	東西断面図(NO26.pdf)
hZ	東西断面図 (NO27.pdf)
	東西断面図 (NO28.pdf)
この画面に	東西断面図 (NO29.pdf)
は、17 本の東西	東西断面図 (NO30.pdf)
断面図、地層境	東西断面図 (NO31.pdf)
界面サーフェイ	東西断面図(NO32.pdf)
7(紛,楼比100	東西断面図(NO33.pdf)
	東西断面図(NO34.pdf)
50、25,20)、パ	東西断面図 (NO35.pdf)
ネルダイヤグラ	東西断面図 (NO36.pdf)
ム(透過度 0.30.	東西断面図 (NO37.pdf)
60%) と地質日	東四断面図 (NO38.pdf) 東西斯面図 (NO28.pdf)
回ジョニキカイ	東西断面図 (NO40 p df)
例が衣小されて	地層造界面サーフェイス (100倍)
いる。	地層境界面サーフェイス (50倍)
(2) 東西断面図	地層境界面サーフェイス (20倍)
各東西断面図	地質サーフェフィス(25倍)
をカリックする	断面図凡例
こ ノノノノリロ	パネルダイヤグラム.nwd
と、仕状凶果四	パネルダイヤグラム(透過60%). nwd
測線投影図、岩	パネルダイヤグラム(透過30%). nwd
相断面図、地質	

て表示される (図-4)。

上:柱状図投影図、中:岩相断面図、下:地質断面図

(3) パネルダイヤグラム

画面のパネルグラムをクリックすると、17 断 面からなるパネルダイヤグラムが表示される(図 -5)。この17断面から、いくつかの断面を削除す ると時には、削除したい断面をクリックし非表示 マークを選択すると削除することができる。

図-5 パネルダイヤグラム

(4) 地質境界面サーフェイスモデル

地質境界サーフェイスには、地表面、沖積層基 底面、ローム層基底面、本郷層基底面、武蔵野礫 層基底面、東京層群基底面、上総層群上面が用意 されている。

画面の地質境界サーフェイスをクリックし、次 画面に表示されている 3d サーフェイスの

回マー クをクリックすると、全てのサーフェイスが表示 される。 各フェースの削除は、指示するサーフ ェイス面上を選択し、次画面の非表示をクリック することで、指示したサーフェイス面を消去する ことができる。

図-6 地質境界サーフェイスモデル

(5) 地質境界サーフェイスから特定領域の取出し

サーフェイス断面図から、特定領域のサーフ ェイス面だけを取り出したいときには、ビュー ポイントタブ⇒断面化パネル⇒断面有効化の順 にクリックする。

次に、モードからボックスを選択し、画面変 換をクリックすると、求めたい領域の X、Y、Z 座標値の入力画面が出る。

座標値は平面座標系で示されている。そのた め、緯度・経度から平面座標値を求めるには、 国土地理院 HP にある「緯度経度から平面座標系 変換」を利用することになる。

サーフェイスモデルから、特定領域を切り出 した例を図-7に示す。

3次元地盤モデル作成の課題

図-7 取り出したサーフェイスモデル

3次元地質解析マニュアル⁴⁾によると、3次 元地盤モデル作成では、データの品質管理、モ デルの構築、モデルの品質管理が極めて重要で あることが強調されている。

データの品質管理とはデータの精度や座標の 精度であり、モデルの構築とはモデル化にあた っての地質学・土質学的判断力のことである。

3次元モデルの精度は、これらの3要素により決定づけられることになる。

今回取り上げた石神井川・神田流域(山の手 北半部)は地下地質構造が複雑であり、複数の 礫層が分布する。地層対比にあたって、モデル の構築が問われる地域である。地質解釈により 出来上がるモデルが異なったものなる可能性が ある。

そこで、今回は、元図(柱状図投影断面図、 層相断面図、地質断面図)を並列表示し、地層 対比の過程を示すことにした。今後、新たな地 質データや、地質学的新知見が加わる時に、容 易に地質断面図の修正が出来るようにした。3 次元地盤モデルは固定したものでなく、変化 していくものだと考える。

5. まとめ

空堀川流域、野川流域に続き、今回は山の手 台地北半部の3次元地盤のモデル化を試みた。

それぞれの地域で異なる 3 次元モデルモデリ ングソフトを使用している。それぞれ一長一短が あり、対象とする地域の地質構造に合わせた、適 切なソフトを利用することが必要である。

データが新たに追加されることにより地盤モ デルの修正を可能とするモデルを構築した。その 実用化は今後の課題でもある。

参考文献

1) 野々垣進(2011):地質境界面に基づく3次元地質モデリングシステムの現状と課題、情報地質、22,3,131-142

2)中山俊雄、大澤健二(2017):東京都3次元地盤モデル作成システムの構築、平28東京都土木技術支援・人材 育成センター年報、195-197

3) 大澤健二、中山俊雄(2018):東京都3次元地盤モデル作成システムの構築(その2)、平30、都土木技術支援・ 人材育成センター年報、165-167

4) 3 次元地質解析コンソーシアム (2020): 3 次元地質解析マニュアル Ver. 3, 57